Suppr超能文献

稳定表达膜锚定流感神经氨酸酶的荧光条形码细胞系。

Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases.

作者信息

Finney Joel, Kuraoka Masayuki, Song Shengli, Watanabe Akiko, Liang Xiaoe, Liao Dongmei, Moody M Anthony, Walter Emmanuel B, Harrison Stephen C, Kelsoe Garnett

机构信息

Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA.

出版信息

bioRxiv. 2025 Jan 2:2025.01.01.631020. doi: 10.1101/2025.01.01.631020.

Abstract

The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface. The cell lines are barcoded with fluorescent proteins, enabling high-throughput, 16-plex analyses of antibody binding with commonly available flow cytometers. The cell lines were at least as efficient as a Luminex multiplex binding assay at identifying NA antibodies from a library of unselected clonal IgGs derived from human memory B cells. The membrane-anchored NAs are catalytically active and are compatible with established small-molecule catalytic activity assays. NA-expressing K530 cell lines therefore represent a useful tool for studying NA immunity and evaluating influenza vaccine efficacy.

摘要

对流感病毒神经氨酸酶(NA)具有广泛保护作用的抗体的发现,引发了人们对将NA作为疫苗靶点的兴趣。然而,重组、可溶解的四聚体NA胞外结构域的表达和分离往往具有挑战性,这阻碍了对抗NA体液免疫反应的研究。为了解决这一障碍,我们建立了一组22种非贴壁细胞系,这些细胞系稳定表达锚定在细胞表面的天然、历史N1、N2、N3、N9和NB NA。这些细胞系用荧光蛋白进行了条形码标记,能够使用常用的流式细胞仪进行高通量、16重抗体结合分析。在从源自人类记忆B细胞的未选择克隆IgG文库中鉴定NA抗体方面,这些细胞系至少与Luminex多重结合分析一样有效。膜锚定的NA具有催化活性,并且与已建立的小分子催化活性测定兼容。因此,表达NA的K530细胞系是研究NA免疫和评估流感疫苗效力的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ec/12218774/9804ebbc4b23/nihpp-2025.01.01.631020v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验