Sanders Erin N, Sun Hsuan-Te, Tabatabaee Saman, Lang Charles F, van Dijk Sebastian G, Su Yu-Han, Labott Andrew, Idris Javeria, He Li, Marchetti Marco, Xie Shicong, O'Brien Lucy Erin
Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
bioRxiv. 2025 Feb 18:2024.12.29.630675. doi: 10.1101/2024.12.29.630675.
Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that expedite differentiation are unclear. Using the adult intestine, we find that injury accelerates differentiation by modulating the lateral inhibition circuit that transduces a fate-determining Notch signal. During routine intestinal turnover, balanced terminal (Notch-active) and stem (Notch-inactive) fates arise through lateral inhibition in which Notch-Delta signaling between two stem cell daughters resolves over time to activate Notch and extinguish Delta in one cell. When we feed flies a gut-damaging toxin, injury-induced cytokines cause Notch-activated cells to escape normal Delta suppression by inactivating the Notch co-repressor Groucho. Mathematical modeling predicts that this augmented Delta prompts faster Notch signaling; indeed, live imaging reveals that injury-born cells undergo markedly faster Notch signal transduction. Thus, Notch-Delta lateral inhibition-a switch that regulates fates during steady-state turnover-also serves as a throttle that tunes differentiation speed according to tissue need.
受损的上皮器官必须迅速替换受损细胞,以恢复屏障完整性和生理功能。作为响应,损伤产生的干细胞后代与健康产生的对应细胞相比分化更快,但加速分化的机制尚不清楚。利用成年肠道,我们发现损伤通过调节转导命运决定性Notch信号的侧向抑制回路来加速分化。在常规肠道更新过程中,平衡的终末(Notch激活)和干细胞(Notch失活)命运通过侧向抑制产生,其中两个干细胞子代之间的Notch-Delta信号随着时间的推移而解决,以激活一个细胞中的Notch并消除Delta。当我们给果蝇喂食破坏肠道的毒素时,损伤诱导的细胞因子通过使Notch共抑制因子Groucho失活,导致Notch激活的细胞逃避正常的Delta抑制。数学模型预测,这种增强的Delta会促使Notch信号更快;事实上,实时成像显示损伤产生的细胞经历明显更快的Notch信号转导。因此,Notch-Delta侧向抑制——一种在稳态更新过程中调节命运的开关——也充当了一个节流阀,根据组织需要调节分化速度。
Endocr Metab Immune Disord Drug Targets. 2025-1-13
Cochrane Database Syst Rev. 2022-5-13
Biochem Biophys Res Commun. 2025-8-30
Epigenomics. 2025-4
Cochrane Database Syst Rev. 2021-9-14
Stem Cell Reports. 2024-8-13
Annu Rev Genet. 2023-11-27
Front Cell Dev Biol. 2022-12-20
Annu Rev Cell Dev Biol. 2022-10-6
Int J Mol Sci. 2022-2-18
Dev Cell. 2022-1-24