文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

器官损伤通过调节一种命运转导侧向抑制回路来加速干细胞分化。

Organ injury accelerates stem cell differentiation by modulating a fate-transducing lateral inhibition circuit.

作者信息

Sanders Erin N, Sun Hsuan-Te, Tabatabaee Saman, Lang Charles F, van Dijk Sebastian G, Su Yu-Han, Labott Andrew, Idris Javeria, He Li, Marchetti Marco, Xie Shicong, O'Brien Lucy Erin

机构信息

Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

bioRxiv. 2025 Feb 18:2024.12.29.630675. doi: 10.1101/2024.12.29.630675.


DOI:10.1101/2024.12.29.630675
PMID:39803552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11722240/
Abstract

Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that expedite differentiation are unclear. Using the adult intestine, we find that injury accelerates differentiation by modulating the lateral inhibition circuit that transduces a fate-determining Notch signal. During routine intestinal turnover, balanced terminal (Notch-active) and stem (Notch-inactive) fates arise through lateral inhibition in which Notch-Delta signaling between two stem cell daughters resolves over time to activate Notch and extinguish Delta in one cell. When we feed flies a gut-damaging toxin, injury-induced cytokines cause Notch-activated cells to escape normal Delta suppression by inactivating the Notch co-repressor Groucho. Mathematical modeling predicts that this augmented Delta prompts faster Notch signaling; indeed, live imaging reveals that injury-born cells undergo markedly faster Notch signal transduction. Thus, Notch-Delta lateral inhibition-a switch that regulates fates during steady-state turnover-also serves as a throttle that tunes differentiation speed according to tissue need.

摘要

受损的上皮器官必须迅速替换受损细胞,以恢复屏障完整性和生理功能。作为响应,损伤产生的干细胞后代与健康产生的对应细胞相比分化更快,但加速分化的机制尚不清楚。利用成年肠道,我们发现损伤通过调节转导命运决定性Notch信号的侧向抑制回路来加速分化。在常规肠道更新过程中,平衡的终末(Notch激活)和干细胞(Notch失活)命运通过侧向抑制产生,其中两个干细胞子代之间的Notch-Delta信号随着时间的推移而解决,以激活一个细胞中的Notch并消除Delta。当我们给果蝇喂食破坏肠道的毒素时,损伤诱导的细胞因子通过使Notch共抑制因子Groucho失活,导致Notch激活的细胞逃避正常的Delta抑制。数学模型预测,这种增强的Delta会促使Notch信号更快;事实上,实时成像显示损伤产生的细胞经历明显更快的Notch信号转导。因此,Notch-Delta侧向抑制——一种在稳态更新过程中调节命运的开关——也充当了一个节流阀,根据组织需要调节分化速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/9753d498f03a/nihpp-2024.12.29.630675v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/e6778cb5816d/nihpp-2024.12.29.630675v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/bb92f1d4aef8/nihpp-2024.12.29.630675v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/419665a9f20d/nihpp-2024.12.29.630675v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/ed06a8479650/nihpp-2024.12.29.630675v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/5ea62e86d85b/nihpp-2024.12.29.630675v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/9753d498f03a/nihpp-2024.12.29.630675v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/e6778cb5816d/nihpp-2024.12.29.630675v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/bb92f1d4aef8/nihpp-2024.12.29.630675v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/419665a9f20d/nihpp-2024.12.29.630675v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/ed06a8479650/nihpp-2024.12.29.630675v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/5ea62e86d85b/nihpp-2024.12.29.630675v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ee/11849476/9753d498f03a/nihpp-2024.12.29.630675v2-f0006.jpg

相似文献

[1]
Organ injury accelerates stem cell differentiation by modulating a fate-transducing lateral inhibition circuit.

bioRxiv. 2025-2-18

[2]
Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease.

bioRxiv. 2024-1-6

[3]
Relationship Between Pituitary Gland and Stem Cell in the Aspect of Hormone Production and Disease Prevention: A Narrative Review.

Endocr Metab Immune Disord Drug Targets. 2025-1-13

[4]
Stem cell transplantation for induction of remission in medically refractory Crohn's disease.

Cochrane Database Syst Rev. 2022-5-13

[5]
Multiscale simulations reveal architecture of NOTCH protein and ligand specific features.

Biophys J. 2025-1-21

[6]
Systemic Inflammatory Response Syndrome

2025-1

[7]
Regulation of Notch signaling by miR-79 in Drosophila eye development.

Biochem Biophys Res Commun. 2025-8-30

[8]
Stage-specific DNA methylation dynamics in mammalian heart development.

Epigenomics. 2025-4

[9]
Non-pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy.

Cochrane Database Syst Rev. 2021-9-14

[10]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

本文引用的文献

[1]
Numb provides a fail-safe mechanism for intestinal stem cell self-renewal in adult midgut.

Elife. 2025-4-9

[2]
JAK/STAT signaling promotes the emergence of unique cell states in ulcerative colitis.

Stem Cell Reports. 2024-8-13

[3]
The Clockwork Embryo: Mechanisms Regulating Developmental Rate.

Annu Rev Genet. 2023-11-27

[4]
Notch signaling sculpts the stem cell niche.

Front Cell Dev Biol. 2022-12-20

[5]
An improved organ explant culture method reveals stem cell lineage dynamics in the adult intestine.

Elife. 2022-8-25

[6]
Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut.

EMBO J. 2022-10-4

[7]
Tissue Homeostasis and Non-Homeostasis: From Cell Life Cycles to Organ States.

Annu Rev Cell Dev Biol. 2022-10-6

[8]
Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly.

Science. 2022-3-4

[9]
Cytokine-Induced JAK2-STAT3 Activates Tissue Regeneration under Systemic or Local Inflammation.

Int J Mol Sci. 2022-2-18

[10]
Adaptive differentiation promotes intestinal villus recovery.

Dev Cell. 2022-1-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索