Suppr超能文献

在单次推断步骤中对动态心电图数据中的 QRS 波进行检测和分类。

QRS detection and classification in Holter ECG data in one inference step.

机构信息

Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.

Medical Data Transfer, s.r.o., Brno, Czech Republic.

出版信息

Sci Rep. 2022 Jul 25;12(1):12641. doi: 10.1038/s41598-022-16517-4.

Abstract

While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.

摘要

虽然过去已经开发了各种 QRS 检测和分类方法,但可穿戴设备在日常活动中采集的动态 Holter ECG 数据带来了新的挑战,例如由于患者运动导致的噪声和伪影增加。在这里,我们提出了一种深度学习模型,用于在单导联 Holter ECG 中检测和分类 QRS 复合体。我们介绍了一种新方法,在一个推断步骤中提供 QRS 检测和分类。我们使用一个私人数据集(12111 个 Holter ECG 记录,长度为 30 秒)进行训练、验证和测试方法。还使用了十二个公共数据库来进一步测试方法性能。我们构建了一个软件工具来快速注释私人数据集中的 QRS 复合体,并注释了 619681 个 QRS 复合体。标准化和下采样的 ECG 信号形成 30 秒长的深度学习模型输入。该模型由五个 ResNet 块和一个门控循环单元层组成。模型的输出是一个 30 秒长的 4 通道概率向量(无-QRS、正常 QRS、室性早搏、房性早搏)。输出概率经过后处理以接收预测的 QRS 注释标记。对于 QRS 检测任务,所提出的方法在私人测试集上达到了 0.99 的 F1 分数。通过十二个外部公共数据库的总体平均 F1 跨数据库分数为 0.96±0.06。就 QRS 分类而言,所提出的方法在私人测试集上分别显示出 0.96 和 0.74 的微观和宏观 F1 分数。使用四个外部公共数据集的跨数据库结果分别显示出 0.95±0.03 和 0.73±0.06 的微观和宏观 F1 分数。所提出的结果表明,QRS 检测和分类可以在一个推断步骤中可靠地计算。跨数据库测试显示出比任何比较方法都更高的整体 QRS 检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验