Suppr超能文献

用于自由基反应的分子光电催化

Molecular Photoelectrocatalysis for Radical Reactions.

作者信息

Xiong Peng, Xu Hai-Chao

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

出版信息

Acc Chem Res. 2025 Jan 21;58(2):299-311. doi: 10.1021/acs.accounts.4c00739. Epub 2025 Jan 13.

Abstract

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis. These studies showcased the immense synthetic potential of this hybrid strategy, which not only inherits the strengths of its parent fields but also unlocks unprecedented reactivity and selectivity, enabling challenging transformations under mild conditions while minimizing the reliance on external stoichiometric harsh oxidants or reductants.In this Account, we present our efforts to develop photoelectrocatalytic strategies that leverage homogeneous catalysts to facilitate diverse radical reactions. By integrating electrocatalysis with key photoinduced processes such as single electron transfer (SET), ligand-to-metal charge transfer (LMCT), and hydrogen atom transfer (HAT), we have established photoelectrocatalytic methods to transform substrates such as organotrifluoroborates, arenes, carboxylic acids, and alkanes into reactive radical intermediates. These intermediates subsequently engage in heteroarene C-H functionalization reactions. Importantly, under these photoelectrochemical conditions with homogeneous catalysts, reactive radical intermediates generated in the bulk solution readily participate in efficient radical reactions without undergoing further overoxidation into carbocations, a common challenge in conventional electrochemical systems.By further integration of photoelectrocatalysis with asymmetric catalysis, we have developed photoelectrochemical asymmetric catalysis (PEAC), which proves to be efficient in the enantioselective synthesis of chiral nitriles. This approach involves two relay catalytic cycles: the initial photoelectrocatalytic process engenders benzylic radicals from precursors such as alkyl arenes, benzylic carboxylic acids, and aryl alkenes, and these C-radicals are then subjected to enantioselective cyanation in a subsequent copper-electrocatalytic cycle.Within the realm of oxidative photoelectrochemical transformations, the anode serves as a crucial component for recycling or generating the photocatalyst, while the cathode promotes proton reduction. This dual functionality enables oxidative transformations via H evolution, eliminating the reliance on external chemical oxidants. Furthermore, the adaptability of electrochemical systems, achieved through precise manipulation of electric current or potential, ensures meticulous control over the generation and turnover of multiple catalytic species of diverse electrochemical properties. This unique tunability allows for exceptional control over the catalytic process. As a result, despite being a relatively nascent field, molecular photoelectrocatalysis has become instrumental in enabling numerous challenging transformations that were once difficult or required harsh conditions.

摘要

综述

分子光电催化结合了光催化和有机电合成的优点,包括它们的绿色属性以及提供新型反应性和选择性的能力,是有机化学中一个新兴的领域,满足了对环境可持续性和合成效率日益增长的需求。这种协同方法能够获得更广泛的氧化还原电位范围,在更温和的电极电位下促进氧化还原转化,并减少外部苛刻氧化还原试剂的使用。尽管有这些潜在优势,但直到2019年我们和其他人报道了现代分子光电催化的首批实例,这个领域才受到显著关注。这些研究展示了这种混合策略的巨大合成潜力,它不仅继承了其母体领域的优势,还解锁了前所未有的反应性和选择性,能够在温和条件下实现具有挑战性的转化,同时最大限度地减少对外部化学计量苛刻氧化剂或还原剂的依赖。

在本综述中,我们介绍了开发光电催化策略的努力,这些策略利用均相催化剂促进各种自由基反应。通过将电催化与关键的光诱导过程如单电子转移(SET)、配体到金属电荷转移(LMCT)和氢原子转移(HAT)相结合,我们建立了光电催化方法,将有机三氟硼酸盐、芳烃、羧酸和烷烃等底物转化为反应性自由基中间体。这些中间体随后参与杂芳烃C-H官能化反应。重要的是,在这些使用均相催化剂的光电化学条件下,本体溶液中产生的反应性自由基中间体很容易参与高效的自由基反应,而不会进一步过度氧化成碳正离子,这是传统电化学系统中常见的挑战。

通过将光电催化与不对称催化进一步整合,我们开发了光电化学不对称催化(PEAC),事实证明它在手性腈的对映选择性合成中是有效的。这种方法涉及两个接力催化循环:最初的光电催化过程从烷基芳烃、苄基羧酸和芳基烯烃等前体产生苄基自由基,然后这些C-自由基在随后的铜电催化循环中进行对映选择性氰化。

在氧化光电化学转化领域,阳极是回收或生成光催化剂的关键组件,而阴极促进质子还原。这种双重功能使得通过析氢实现氧化转化,消除了对外部化学氧化剂的依赖。此外,通过精确控制电流或电位实现的电化学系统的适应性,确保了对具有不同电化学性质的多种催化物种的生成和周转进行精细控制。这种独特的可调性允许对催化过程进行卓越的控制。因此,尽管分子光电催化是一个相对新兴的领域,但它已成为实现许多曾经困难或需要苛刻条件的具有挑战性转化的重要手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验