Tran Hong Huy, Xiang Zhenting, Oh Min Jun, Liu Yuan, Ren Zhi, Chen Chider, Jaruchotiratanasakul Nadasinee, Kikkawa James M, Lee Daeyeon, Koo Hyun, Steager Edward
Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Nano. 2025 Jan 28;19(3):3265-3281. doi: 10.1021/acsnano.4c11686. Epub 2025 Jan 13.
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally. Using double emulsion templates and magnetic control techniques, we confine 10 nm iron oxide and 15 nm silica nanoparticles within the shell of 100 μm microcapsules that form multiunit robotic collectives. Unexpectedly, we find that asymmetric localization of iron oxide nanoparticles in the microcapsules enhances the intercapsule potential energy, creating stable connections under rotating magnetic fields without altering the magnetic susceptibility. These robotic microcapsule collectives exhibit emergent behaviors, self-reconfiguring into kinematic chain-like structures to traverse complex obstacles, arched confinements, and adhesive, rugged biological tissues that typically impede microscale systems. By harnessing these functions, we demonstrate targeted antifungal delivery using a localized biofilm model on mucosal tissues, showing effective killing of without binding or causing physical damage to host cells. Our findings show how hierarchical assembly can produce cargo-carrying microrobots with collective, self-adaptive mobility for traversing complex biological environments, advancing targeted delivery for biomedical applications.
微型机器人有望通过实现精确、无创的程序来变革生物医学。然而,当前由固态整体颗粒组成的磁性微型机器人在工程亚基间相互作用方面存在根本挑战,限制了它们在不规则生物地形和受限空间中导航的集体效能。为解决这一问题,我们通过设计亚基间的潜在磁相互作用能来创建能够在内部携带和保护货物的稳定、可自我重构的结构,从而设计出具有多轴移动性和集体适应性的分层组装微型机器人。利用双乳液模板和磁控技术,我们将10纳米的氧化铁和15纳米的二氧化硅纳米颗粒限制在100微米微胶囊的壳内,这些微胶囊形成多单元机器人集合体。出乎意料的是,我们发现微胶囊中氧化铁纳米颗粒的不对称定位增强了胶囊间势能,在旋转磁场下形成稳定连接而不改变磁化率。这些机器人微胶囊集合体表现出涌现行为,自我重构为运动链状结构以穿越复杂障碍物、拱形限制区域以及通常会阻碍微观系统的粘性、崎岖的生物组织。通过利用这些功能,我们在粘膜组织上使用局部生物膜模型展示了靶向抗真菌递送,显示出在不与宿主细胞结合或造成物理损伤的情况下有效杀灭真菌。我们的研究结果表明分层组装如何能够产生具有集体、自适应移动性以穿越复杂生物环境的载物微型机器人,推动生物医学应用中的靶向递送。