ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4745-4756. doi: 10.1021/acsami.8b15586. Epub 2019 Jan 23.
Magnetic microrobots can be actuated in fuel-free conditions and are envisioned for biomedical applications related to targeted delivery and therapy in a minimally invasive manner. However, mass fabrication of microrobots with precise propulsion performance and excellent therapeutic efficacy is still challenging, especially in a predictable and controllable manner. Herein, we propose a facile technique for mass production of magnetic microrobots with multiple functions using Spirulina ( Sp.) as biotemplate. Core-shell-structured Pd@Au nanoparticles (NPs) were synthesized in Sp. cells by electroless deposition, working as photothermal conversion agents. Subsequently, the FeO NPs were deposited onto the surface of the obtained (Pd@Au)@ Sp. particles via a sol-gel process, enabling them to be magnetically actuated. Moreover, the anticancer drug doxorubicin (DOX) was loaded on the (Pd@Au)/FeO@ Sp. microrobots, which endows them with additional chemotherapeutic efficacy. The as-prepared biohybrid (Pd@Au)/FeO@ Sp.-DOX microrobots not only possess efficient propulsion performance with the highest speed of 526.2 μm/s under a rotating magnetic field but also have enhanced synergistic chemo-photothermal therapeutic efficacy. Furthermore, they can be structurally disassembled into individual particles under near-infrared (NIR) laser irradiation and exhibit pH- and NIR-triggered drug release. These intriguing properties enable the microrobots to be a very promising and efficient platform for drug loading, targeted delivery, and chemo-photothermal therapy.
磁性微机器人可以在无燃料条件下进行驱动,被设想用于生物医学应用,如以微创方式进行靶向输送和治疗。然而,以可预测和可控的方式大规模制造具有精确推进性能和优异治疗效果的微机器人仍然具有挑战性。在此,我们提出了一种使用螺旋藻(Sp.)作为生物模板大规模生产多功能磁性微机器人的简便技术。通过无电沉积在 Sp. 细胞内合成了核壳结构的 Pd@Au 纳米颗粒(NPs),用作光热转换剂。随后,通过溶胶-凝胶工艺将 FeO NPs 沉积到所得(Pd@Au)@Sp. 颗粒的表面上,使其能够进行磁驱动。此外,将抗癌药物阿霉素(DOX)负载在(Pd@Au)/FeO@Sp. 微机器人上,赋予它们额外的化疗疗效。所制备的生物杂化(Pd@Au)/FeO@Sp.-DOX 微机器人不仅具有高效的推进性能,在旋转磁场下最高速度可达 526.2 μm/s,而且具有增强的协同化学-光热治疗效果。此外,它们可以在近红外(NIR)激光照射下结构分解成单个颗粒,并表现出 pH 和 NIR 触发的药物释放。这些有趣的性质使微机器人成为一种很有前途和高效的药物负载、靶向输送和化学-光热治疗平台。