Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland.
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona08860, Spain.
ACS Nano. 2023 Feb 28;17(4):3657-3665. doi: 10.1021/acsnano.2c10482. Epub 2023 Feb 13.
Understanding and actively controlling the spatiotemporal dynamics of nonequilibrium electron clouds is fundamental for the design of light and electron sources, high-power electronic devices, and plasma-based applications. However, electron clouds evolve in a complex collective fashion on the nanometer and femtosecond scales, producing electromagnetic screening that renders them inaccessible to existing optical probes. Here, we solve the long-standing challenge of characterizing the evolution of electron clouds generated upon irradiation of metallic structures using an ultrafast transmission electron microscope to record the charged plasma dynamics. Our approach to charge dynamics electron microscopy (CDEM) is based on the simultaneous detection of electron-beam acceleration and broadening with nanometer/femtosecond resolution. By combining experimental results with comprehensive microscopic theory, we provide a deep understanding of this highly out-of-equilibrium regime, including previously inaccessible intricate microscopic mechanisms of electron emission, screening by the metal, and collective cloud dynamics. Beyond the present specific demonstration, the here-introduced CDEM technique grants us access to a wide range of nonequilibrium electrodynamic phenomena involving the ultrafast evolution of bound and free charges on the nanoscale.
理解和主动控制非平衡电子云的时空动力学对于设计光源和电子源、高功率电子器件以及基于等离子体的应用至关重要。然而,电子云在纳米和飞秒尺度上以复杂的集体方式演化,产生电磁屏蔽,使它们无法被现有的光学探针探测到。在这里,我们使用超快透射电子显微镜记录带电等离子体动力学,解决了长期以来在金属结构辐照时描述电子云演化的挑战。我们的电荷动力学电子显微镜(CDEM)方法基于同时以纳米/飞秒分辨率检测电子束的加速和展宽。通过将实验结果与全面的微观理论相结合,我们深入了解了这个高度非平衡的状态,包括以前无法探测到的电子发射、金属屏蔽和集体云动力学的复杂微观机制。除了目前的具体演示,这里引入的 CDEM 技术使我们能够访问涉及纳米尺度上束缚和自由电荷超快演化的广泛的非平衡电动力学现象。