Suppr超能文献

Fragmenstein:使用基于严格保守结合的方法预测源自已知晶体学片段命中化合物的蛋白质-配体结构。

Fragmenstein: predicting protein-ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding-based methodology.

作者信息

Ferla Matteo P, Sánchez-García Rubén, Skyner Rachael E, Gahbauer Stefan, Taylor Jenny C, von Delft Frank, Marsden Brian D, Deane Charlotte M

机构信息

Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.

Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

J Cheminform. 2025 Jan 13;17(1):4. doi: 10.1186/s13321-025-00946-0.

Abstract

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. The molecule is then energy minimised under strong constraints to obtain a structurally plausible conformer. The code is available at https://github.com/oxpig/Fragmenstein .Scientific contributionThis work shows the importance of using the coordinates of known binders when predicting the conformation of derivative molecules through a retrospective analysis of the COVID Moonshot data. This method has had a prior real-world application in hit-to-lead screening, yielding a sub-micromolar merger from parent hits in a single round. It is therefore likely to further benefit future drug design campaigns and be integrated in future pipelines.

摘要

目前基于片段药物设计(FBDD)晶体学筛选中,以合并或连接初始命中片段为核心的策略通常无法充分利用三维结构信息。我们表明,一种算法方法(Fragmenstein),即将来自该结构信息的配体原子“拼接”在一起,与诸如药效团约束对接等常规方法相比,能够为蛋白质-配体复合物构象提供更准确可靠的预测。该方法在保守结合的假设下有效:当设计一个包含初始片段命中物的更大分子时,两者之间的共同子结构将采用相同的结合模式。Fragmenstein要么从实验片段筛选中获取配体的原子坐标,并将原子组合在一起以生成一种新型的合并虚拟化合物,要么使用它们来预测所提供分子的结合复合物。然后在强约束下对该分子进行能量最小化,以获得结构上合理的构象异构体。代码可在https://github.com/oxpig/Fragmenstein获取。科学贡献这项工作通过对COVID Moonshot数据的回顾性分析,展示了在预测衍生分子构象时使用已知结合物坐标的重要性。该方法在从命中物到先导物的筛选中已有实际应用案例,并在一轮中从母体命中物中产生了亚微摩尔级的合并产物。因此,它可能会进一步造福未来的药物设计活动,并被整合到未来的流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f8/11731148/93b18da96166/13321_2025_946_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验