Suppr超能文献

BoKDiff:用于特定目标3D分子生成的K选优扩散对齐

BoKDiff: best-of-K diffusion alignment for target-specific 3D molecule generation.

作者信息

Khodabandeh Yalabadi Ali, Yazdani-Jahromi Mehdi, Garibay Ozlem Ozmen

机构信息

Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, United States.

Department of Computer Science, University of Central Florida, Orlando, FL 32816, United States.

出版信息

Bioinform Adv. 2025 Jun 10;5(1):vbaf137. doi: 10.1093/bioadv/vbaf137. eCollection 2025.

Abstract

MOTIVATION

Structure-based drug design (SBDD) leverages the 3D structure of target proteins to guide therapeutic development. While generative models like diffusion models and geometric deep learning show promise in ligand design, challenges such as limited protein-ligand data and poor alignment reduce their effectiveness. We introduce BoKDiff, a domain-adapted framework inspired by alignment strategies in large language and vision models that combines multi-objective optimization with Best-of-K alignment to enhance ligand generation.

RESULTS

Built on DecompDiff, BoKDiff generates diverse ligands and ranks them using a weighted score based on QED, SA, and docking metrics. To overcome alignment issues, we reposition each ligand's center of mass to match its docking pose, enabling more accurate sub-component extraction. We further incorporate a Best-of-N (BoN) sampling strategy to select optimal candidates without model fine-tuning. BoN achieves QED > 0.6, SA > 0.75, and over 35% success rate. BoKDiff outperforms prior models on the CrossDocked2020 dataset with an average docking score of -8.58 and 26% valid molecule generation rate. This is the first study to integrate Best-of-K alignment and BoN sampling into SBDD, demonstrating their potential for practical, high-quality ligand design.

AVAILABILITY AND IMPLEMENTATION

Code is available at https://github.com/khodabandeh-ali/BoKDiff.git.

摘要

动机

基于结构的药物设计(SBDD)利用靶蛋白的三维结构来指导治疗药物的开发。虽然扩散模型和几何深度学习等生成模型在配体设计方面显示出前景,但诸如蛋白质-配体数据有限和对齐不佳等挑战降低了它们的有效性。我们引入了BoKDiff,这是一个受大语言和视觉模型中的对齐策略启发的领域适应框架,它将多目标优化与最佳K对齐相结合以增强配体生成。

结果

基于DecompDiff构建,BoKDiff生成多样的配体,并使用基于QED、SA和对接指标的加权分数对它们进行排名。为了克服对齐问题,我们重新定位每个配体的质心以匹配其对接姿势,从而实现更准确的子组件提取。我们进一步纳入了最佳N(BoN)采样策略,以在不进行模型微调的情况下选择最佳候选者。BoN实现了QED>0.6、SA>0.75以及超过35%的成功率。在CrossDocked2020数据集上,BoKDiff的平均对接分数为-8.58,有效分子生成率为26%,优于先前的模型。这是第一项将最佳K对齐和BoN采样整合到SBDD中的研究,证明了它们在实际高质量配体设计中的潜力。

可用性和实现

代码可在https://github.com/khodabandeh-ali/BoKDiff.git获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验