Nakahara Eri, Waki Kayo, Kurasawa Hisashi, Mimura Imari, Seki Tomohisa, Fujino Akinori, Shiomi Nagisa, Nangaku Masaomi, Ohe Kazuhiko
Nippon Telegraph and Telephone Corporation, Japan.
The University of Tokyo, Japan.
Heliyon. 2024 Nov 22;11(1):e40566. doi: 10.1016/j.heliyon.2024.e40566. eCollection 2025 Jan 15.
Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear. Previous studies focused on a limited number of laboratory tests, no comprehensive study targeting a wide range of laboratory tests has been done. We target to develop a model that predicts RD among T2D and points to key laboratory tests of interest in understanding RD from various laboratory tests.
Our machine learning model predicts whether RD, as represented via eGFR, will happen within 1 year. Additionally, the model uses Recursive feature elimination with cross-validation (RFECV) to eliminate the features that do not contribute to the prediction. We trained and assessed the model using 1202 types of laboratory tests from 3438 diabetes patients at the University of Tokyo Hospital.
The means (95 % confidence interval) of the receiver operating characteristic area under the curve (ROC-AUC), precision-recall area under the curve, accuracy rate, and F1-score of an 8-feature-model were 0.820 (0.811, 0.829), 0.430 (0.410, 0.451), 0.754 (0.747, 0.761), and 0.500 (0.485, 0.515), respectively. The RFECV revealed that 7 test types (MCH, γ-GTP, Cre, HbA1c, HDL-C, eGFR, and Hct) contributed to RD prediction. The model's ROC-AUC of 0.820 improves on the ROC-AUC of 0.775 seen in previous studies.
The proposed model accurately predicts RD among diabetes patients and helps physicians focus on inhibiting progression of kidney damage. The contributing laboratory tests may serve as alternative biomarkers for DKD.
糖尿病肾病(DKD)是2型糖尿病(T2D)的典型并发症之一,约10%的DKD患者肾功能会快速下降(RD)。RD会增加诸如需要透析等不良结局的风险。蛋白尿是DKD已知的肾脏损伤生物标志物,但RD患者并不总是出现蛋白尿变化,且RD的确切机制仍不清楚。以往研究聚焦于有限的一些实验室检查,尚未针对广泛的实验室检查进行全面研究。我们旨在开发一个模型,用于预测T2D患者中的RD,并从各种实验室检查中找出与理解RD相关的关键实验室检查。
我们的机器学习模型预测以估算肾小球滤过率(eGFR)表示的RD是否会在1年内发生。此外,该模型使用带交叉验证的递归特征消除法(RFECV)来消除对预测无贡献的特征。我们使用东京大学医院3438名糖尿病患者的1202种实验室检查对模型进行训练和评估。
一个8特征模型的曲线下面积(ROC-AUC)、精确召回率曲线下面积、准确率和F1分数的均值(95%置信区间)分别为0.820(0.811,0.829)、0.430(0.410,0.451)、0.754(0.747,0.761)和0.500(0.485,0.515)。RFECV显示7种检查类型(平均红细胞血红蛋白含量、γ-谷氨酰转肽酶、肌酐、糖化血红蛋白、高密度脂蛋白胆固醇、eGFR和血细胞比容)对RD预测有贡献。该模型的ROC-AUC为0.820,优于以往研究中观察到的0.775。
所提出的模型能准确预测糖尿病患者中的RD,并有助于医生专注于抑制肾脏损伤进展。有贡献的实验室检查可能作为DKD的替代生物标志物。