Li Guangpu, Li Jia, Tian Fei, Ren Jingjing, Guo Zuishuang, Pan Shaokang, Liu Dongwei, Duan Jiayu, Liu Zhangsuo
Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
Digit Health. 2024 Jul 21;10:20552076241265220. doi: 10.1177/20552076241265220. eCollection 2024 Jan-Dec.
As the prevalence of diabetes steadily increases, the burden of diabetic kidney disease (DKD) is also intensifying. In response, we have utilized a 10-year diabetes cohort from our medical center to train machine learning-based models for predicting DKD and interpreting relevant factors.
Employing a large dataset from 73,101 hospitalized type 2 diabetes patients at The First Affiliated Hospital of Zhengzhou University, we analyzed demographic and medication data. Machine learning models, including XGBoost, CatBoost, LightGBM, Random Forest, AdaBoost, GBDT (gradient boosting decision tree), and SGD (stochastic gradient descent), were trained on these data, focusing on interpretability by SHAP. SHAP explains the output of the models by assigning an importance value to each feature for a particular prediction, enabling a clear understanding of how individual features influence the prediction outcomes.
The XGBoost model achieved an area under the curve (AUC) of 0.95 and an area under the precision-recall curve (AUPR) of 0.76, while CatBoost recorded an AUC of 0.97 and an AUPR of 0.84. These results underscore the effectiveness of these models in predicting DKD in patients with type 2 diabetes.
This study provides a comprehensive approach for predicting DKD in patients with type 2 diabetes, employing machine learning techniques. The findings are crucial for the early detection and intervention of DKD, offering a roadmap for future research and healthcare strategies in diabetes management. Additionally, the presence of non-diabetic kidney diseases and diabetes with complications was identified as significant factors in the development of DKD.
随着糖尿病患病率稳步上升,糖尿病肾病(DKD)的负担也在加剧。作为应对措施,我们利用了来自我们医疗中心的一个为期10年的糖尿病队列来训练基于机器学习的模型,以预测DKD并解释相关因素。
我们使用了郑州大学第一附属医院73101例住院2型糖尿病患者的大型数据集,分析了人口统计学和用药数据。在这些数据上训练了包括XGBoost、CatBoost、LightGBM、随机森林、AdaBoost、梯度提升决策树(GBDT)和随机梯度下降(SGD)在内的机器学习模型,重点是通过SHAP进行可解释性分析。SHAP通过为特定预测的每个特征分配一个重要性值来解释模型的输出,从而能够清楚地了解各个特征如何影响预测结果。
XGBoost模型的曲线下面积(AUC)为0.95,精确率-召回率曲线下面积(AUPR)为0.76,而CatBoost的AUC为0.97,AUPR为0.84。这些结果强调了这些模型在预测2型糖尿病患者DKD方面的有效性。
本研究提供了一种利用机器学习技术预测2型糖尿病患者DKD的综合方法。这些发现对于DKD的早期检测和干预至关重要,为糖尿病管理的未来研究和医疗保健策略提供了路线图。此外,非糖尿病肾病和伴有并发症的糖尿病的存在被确定为DKD发生的重要因素。