Suppr超能文献

基于3D V-Net模型的肾上腺CT特征分析

Characterization of adrenal glands on computed tomography with a 3D V-Net-based model.

作者信息

Chen Yuanchong, Zhang Yaofeng, Zhang Xiaodong, Wang Xiaoying

机构信息

Department of Radiology, Peking University First Hospital, Beijing, 100034, China.

Beijing Smart Tree Medical Technology Co. Ltd., Beijing, 100011, China.

出版信息

Insights Imaging. 2025 Jan 14;16(1):17. doi: 10.1186/s13244-025-01898-7.

Abstract

OBJECTIVES

To evaluate the performance of a 3D V-Net-based segmentation model of adrenal lesions in characterizing adrenal glands as normal or abnormal.

METHODS

A total of 1086 CT image series with focal adrenal lesions were retrospectively collected, annotated, and used for the training of the adrenal lesion segmentation model. The dice similarity coefficient (DSC) of the test set was used to evaluate the segmentation performance. The other cohort, consisting of 959 patients with pathologically confirmed adrenal lesions (external validation dataset 1), was included for validation of the classification performance of this model. Then, another consecutive cohort of patients with a history of malignancy (N = 479) was used for validation in the screening population (external validation dataset 2). Parameters of sensitivity, accuracy, etc., were used, and the performance of the model was compared to the radiology report in these validation scenes.

RESULTS

The DSC of the test set of the segmentation model was 0.900 (0.810-0.965) (median (interquartile range)). The model showed sensitivities and accuracies of 99.7%, 98.3% and 87.2%, 62.2% in external validation datasets 1 and 2, respectively. It showed no significant difference comparing to radiology reports in external validation datasets 1 and lesion-containing groups of external validation datasets 2 (p = 1.000 and p > 0.05, respectively).

CONCLUSION

The 3D V-Net-based segmentation model of adrenal lesions can be used for the binary classification of adrenal glands.

CRITICAL RELEVANCE STATEMENT

A 3D V-Net-based segmentation model of adrenal lesions can be used for the detection of abnormalities of adrenal glands, with a high accuracy in the pre-surgical scene as well as a high sensitivity in the screening scene.

KEY POINTS

Adrenal lesions may be prone to inter-observer variability in routine diagnostic workflow. The study developed a 3D V-Net-based segmentation model of adrenal lesions with DSC 0.900 in the test set. The model showed high sensitivity and accuracy of abnormalities detection in different scenes.

摘要

目的

评估基于3D V-Net的肾上腺病变分割模型在将肾上腺特征化为正常或异常方面的性能。

方法

回顾性收集、标注了1086例有局灶性肾上腺病变的CT图像序列,并将其用于肾上腺病变分割模型的训练。使用测试集的骰子相似系数(DSC)来评估分割性能。另一个队列由959例经病理证实有肾上腺病变的患者组成(外部验证数据集1),用于验证该模型的分类性能。然后,将另一组有恶性肿瘤病史的连续患者(N = 479)用于筛查人群的验证(外部验证数据集2)。使用敏感性、准确性等参数,并在这些验证场景中将模型的性能与放射学报告进行比较。

结果

分割模型测试集的DSC为0.900(0.810 - 0.965)(中位数(四分位间距))。该模型在外部验证数据集1和2中的敏感性分别为99.7%、98.3%,准确性分别为87.2%、62.2%。在外部验证数据集1和外部验证数据集2的含病变组中,与放射学报告相比无显著差异(分别为p = 1.000和p > 0.05)。

结论

基于3D V-Net的肾上腺病变分割模型可用于肾上腺的二元分类。

关键相关性声明

基于3D V-Net的肾上腺病变分割模型可用于检测肾上腺异常,在术前场景中具有较高准确性,在筛查场景中具有较高敏感性。

要点

肾上腺病变在常规诊断工作流程中可能容易出现观察者间差异。该研究开发了一种基于3D V-Net的肾上腺病变分割模型,测试集的DSC为0.900。该模型在不同场景中显示出对异常检测的高敏感性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d84/11732807/51152999651f/13244_2025_1898_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验