Suppr超能文献

在一项为期1年的队列分析中识别抑郁症亚型并研究其一致性和转变情况。

Identifying depression subtypes and investigating their consistency and transitions in a 1-year cohort analysis.

作者信息

Oetzmann Carolin, Cummins Nicholas, Lamers Femke, Matcham Faith, Siddi Sara, White Katie M, Haro Josep Maria, Vairavan Srinivasan, Penninx Brenda W J H, Narayan Vaibhav A, Hotopf Matthew, Carr Ewan

机构信息

King's College London-Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom.

Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands.

出版信息

PLoS One. 2025 Jan 14;20(1):e0314604. doi: 10.1371/journal.pone.0314604. eCollection 2025.

Abstract

Major depressive disorder (MDD) is defined by an array of symptoms that make it challenging to understand the condition at a population level. Subtyping offers a way to unpick this phenotypic diversity for improved disorder characterisation. We aimed to identify depression subtypes longitudinally using the Inventory of Depressive Symptomatology: Self-Report (IDS-SR). A secondary analysis of a two-year cohort study called Remote Assessment of Disease and Relapse in Major Depressive Disorder (RADAR-MDD), which collected data every three months from patients with a history of recurrent MDD in the United Kingdom, the Netherlands, and Spain (N = 619). We used latent class and latent transition analysis to identify subtypes at baseline, determined their consistency at 6- and 12-month follow-ups, and examined transitions over time. We identified a 4-class solution: (1) severe with appetite decrease, (2) severe with appetite increase, (3) moderate severity and (4) low severity. These same classes were identified at 6- and 12-month follow-ups, and participants tended to remain in the same class over time. We found no statistically significant differences between the two severe subtypes regarding baseline clinical and sociodemographic characteristics. Our findings emphasize severity differences over symptom types, suggesting that current subtyping methods provide insights akin to existing severity measures. When examining transitions, participants were most likely to remain in their respective classes over 1-year, indicating chronicity rather than oscillations in depression severity. Future work recommendations are made.

摘要

重度抑郁症(MDD)由一系列症状所定义,这使得在人群层面理解该病症具有挑战性。亚型分类提供了一种剖析这种表型多样性的方法,以改进病症的特征描述。我们旨在使用抑郁症状量表:自我报告(IDS-SR)纵向识别抑郁症亚型。对一项名为“重度抑郁症疾病与复发的远程评估”(RADAR-MDD)的为期两年的队列研究进行二次分析,该研究每三个月从英国、荷兰和西班牙有复发性MDD病史的患者中收集数据(N = 619)。我们使用潜在类别和潜在转变分析在基线时识别亚型,确定它们在6个月和12个月随访时的一致性,并检查随时间的转变情况。我们确定了一个四类解决方案:(1)伴有食欲减退的重度,(2)伴有食欲增加的重度,(3)中度严重程度,(4)轻度严重程度。在6个月和12个月随访时识别出了相同的类别,并且参与者随着时间推移倾向于保持在同一类别中。我们发现两种重度亚型在基线临床和社会人口学特征方面没有统计学上的显著差异。我们的研究结果强调了严重程度差异而非症状类型差异,表明当前的亚型分类方法提供了类似于现有严重程度测量方法的见解。在检查转变情况时,参与者在1年中最有可能保持在各自类别中,这表明抑郁症严重程度具有慢性而非波动性。提出了未来工作的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b9/11731715/e2b01b8fb135/pone.0314604.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验