Ginsberg Alexander G, Lempka Scott F, Duan Bo, Booth Victoria, Crodelle Jennifer
Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America.
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS Comput Biol. 2025 Jan 14;21(1):e1012234. doi: 10.1371/journal.pcbi.1012234. eCollection 2025 Jan.
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in laminae I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain symptom.
慢性疼痛是一种广泛存在的病症,它使人衰弱且管理成本高昂,仅在2010年,美国为此花费就约达6000亿美元。在一种名为异常性疼痛的慢性疼痛常见症状中,非疼痛性刺激会产生疼痛反应,且个体间的表现差异很大。虽然具体机制尚不清楚,但据推测异常性疼痛是由脊髓背角疼痛处理神经回路中兴奋性-抑制性(E-I)平衡失调所致。在这项研究中,我们分析了具有生物物理动机的子回路结构,这些结构代表了背角I-II层神经回路中的常见模式。这些回路被认为是介导两种不同类型异常性疼痛(静态和动态)的神经通路的一部分。我们使用神经放电率模型来描述每个子回路中兴奋性和抑制性中间神经元群体的活动。通过考虑健康条件下实验观察到的反应,我们确定了定义子回路群体的模型参数,这些子回路在正常条件下会产生典型行为。然后,我们采用敏感性分析方法来确定最有可能导致子回路E-I信号失调从而产生异常性疼痛的机制。我们发现,E-I平衡的破坏通常是由于抑制性信号下调导致兴奋性神经元从抑制性控制中“释放”出来所致,或者是由于兴奋性神经元反应上调导致兴奋性神经元“逃脱”其抑制性控制所致。这些机制中哪一种最有可能发生、该机制涉及的子回路成分以及表现出该机制的子回路比例可能因子回路结构而异。这些结果提出了关于可能最导致异常性疼痛的多种机制的具体假设,从而为异常性疼痛中观察到的个体间高度变异性提供了预测,并确定了针对这种慢性疼痛症状潜在机制进行进一步实验研究的靶点。