Takács Virág, Papp Péter, Orosz Áron, Bardóczi Zsuzsanna, Zsoldos Tamás, Zichó Krisztián, Watanabe Masahiko, Maglóczky Zsófia, Gombás Péter, Freund Tamás F, Nyiri Gábor
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary.
János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary.
J Neurosci. 2025 Mar 5;45(10):e0372242024. doi: 10.1523/JNEUROSCI.0372-24.2024.
The human hippocampus, essential for learning and memory, is implicated in numerous neurological and psychiatric disorders, each linked to specific neuronal subpopulations. Advancing our understanding of hippocampal function requires computational models grounded in precise quantitative neuronal data. While extensive data exist on the neuronal composition and synaptic architecture of the rodent hippocampus, analogous quantitative data for the human hippocampus remain very limited. Given the critical role of local GABAergic interneurons in modulating hippocampal functions, we employed unbiased stereological techniques to estimate the density and total number of three major GABAergic cell types in the male and female human hippocampus: parvalbumin (PV)-expressing, somatostatin (SOM)-positive, and calretinin (CR)-positive interneurons. Our findings reveal an estimated 49,400 PV-positive, 141,500 SOM-positive, and 250,600 CR-positive interneurons per hippocampal hemisphere. Notably, CR-positive interneurons, which are primarily interneuron-selective in rodents, were present in humans at a higher proportion. Additionally, using three-dimensional electron microscopy, we estimated ∼25 billion GABAergic synapses per hippocampal hemisphere, with PV-positive boutons comprising ∼3.5 billion synapses, or 14% of the total GABAergic synapses. These findings contribute crucial quantitative insights for modeling human hippocampal circuits and understanding its complex regulatory dynamics.
人类海马体对学习和记忆至关重要,与众多神经和精神疾病有关,每种疾病都与特定的神经元亚群相关。增进我们对海马体功能的理解需要基于精确的定量神经元数据的计算模型。虽然关于啮齿动物海马体的神经元组成和突触结构存在大量数据,但人类海马体的类似定量数据仍然非常有限。鉴于局部GABA能中间神经元在调节海马体功能中的关键作用,我们采用无偏立体学技术来估计男性和女性人类海马体中三种主要GABA能细胞类型的密度和总数:表达小白蛋白(PV)的、生长抑素(SOM)阳性的和钙视网膜蛋白(CR)阳性的中间神经元。我们的研究结果显示,每个海马体半球估计有49400个PV阳性、141500个SOM阳性和250600个CR阳性中间神经元。值得注意的是,CR阳性中间神经元在啮齿动物中主要是中间神经元选择性的,在人类中的比例更高。此外,使用三维电子显微镜,我们估计每个海马体半球约有250亿个GABA能突触,其中PV阳性终扣约占35亿个突触,占GABA能突触总数的14%。这些发现为模拟人类海马体回路和理解其复杂的调节动态提供了关键的定量见解。