Suppr超能文献

基于深度学习的超宽带太赫兹高维光电探测器。

Deep learning-enabled ultra-broadband terahertz high-dimensional photodetector.

作者信息

Zhang Zong-Kun, Zhang Teng, Zhang Zong-Peng, Chong Ming-Zhe, Xiao Mingqing, Peng Pu, Feng Peijie, Sun Haonan, Zheng Zhipeng, Zang Xiaofei, Fang Zheyu, Xia Ming-Yao

机构信息

State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

出版信息

Nat Commun. 2025 Aug 30;16(1):8133. doi: 10.1038/s41467-025-63364-8.

Abstract

Capturing multi-dimensional optical information is indispensable in modern optics. However, existing photodetectors can at best detect light fields whose wavelengths or polarizations are predefined at several specific values. Integrating broadband high-dimensional continuous photodetection including intensity, polarization, and wavelength within a single device still poses formidable challenges. Here we present a metasurface-mediated high-dimensional detector that projects polarimetric and spectral responses into the Orbital Angular Momentum (OAM) domain via dispersion-driven OAM multiplication. By decoupling the frequency-controlled transmission phase response and polarization-controlled geometric phase response, spectrum and polarization information are encoded into unique polaritonic vortex patterns, which can be accurately deciphered via machine learning technique. Eventually our neural-network assisted metadevice achieves full characterization of intensity-polarization-frequency 3D continuous parametric space, so that light with arbitrarily mixed polarization states across 0.3-1.1 THz can be accurately detected with total error <5.1%. Our technology also showcases application potential as OAM-mediated information encryption, offering impetus for next-generation high-dimensional photodetectors and information security.

摘要

在现代光学中,获取多维光学信息必不可少。然而,现有的光电探测器最多只能检测波长或偏振在几个特定值预定义的光场。在单个器件中集成包括强度、偏振和波长在内的宽带高维连续光电探测仍然面临巨大挑战。在此,我们展示了一种超表面介导的高维探测器,它通过色散驱动的轨道角动量(OAM)倍增将偏振和光谱响应投射到OAM域。通过解耦频率控制的传输相位响应和偏振控制的几何相位响应,光谱和偏振信息被编码为独特的极化激元涡旋图案,可通过机器学习技术准确解译。最终,我们的神经网络辅助超器件实现了强度 - 偏振 - 频率三维连续参数空间的完整表征,从而能够以<5.1%的总误差准确检测0.3 - 1.1太赫兹范围内任意混合偏振态的光。我们的技术还展示了作为OAM介导的信息加密的应用潜力,为下一代高维光电探测器和信息安全提供了动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662e/12398510/86fc4922e576/41467_2025_63364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验