Nagy Jozsef, Fenz Wolfgang, Thumfart Stefan, Maier Julia, Major Zoltan, Stefanits Harald, Gollwitzer Maria, Oberndorfer Johannes, Stroh Nico, Giretzlehner Michael, Sonnberger Michael, Gruber Andreas, Rauch Philip-Rudolf, Gmeiner Matthias
eulerian-solutions e.U., Leonfeldnerstraße 245, Linz, Austria.
Unit Medical Informatics, RISC Software GmbH, Softwarepark 32a, Hagenberg, Austria.
Sci Rep. 2025 Jan 14;15(1):1965. doi: 10.1038/s41598-024-85066-9.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment. In this study, we used advanced FSI techniques to investigate the rupture risk of middle cerebral artery bifurcation (MCA) aneurysms, analyzing a cohort of 125 patients treated for a MCA aneurysm at Kepler University Hospital, Linz, Austria. Multivariate analysis identified two significant rupture predictors: High Equivalent Stress Area (HESA; p = 0.049), which quantifies stress distribution relative to the aneurysm surface, and Gaussian curvature (GLN; p = 0.031), which captures geometric complexity. We also introduce the HGD index, a novel composite metric combining HESA, GLN, and Maximum Wall Displacement, designed to enhance predictive accuracy. With a threshold of 0.075, the HGD index exhibited excellent diagnostic performance; in internal validation, 24 of 25 ruptured aneurysms surpassed this threshold, yielding a sensitivity of 0.96. In a 5-fold cross validation the reliability of results was confirmed. Our findings demonstrate that the HGD index provides superior rupture risk stratification compared to conventional single-parameter models, offering a more robust tool for the assessment of complex aneurysmal structures. Further multicenter studies are warranted to refine and validate the HGD index, advancing its potential for clinical application and improving patient outcomes.
准确评估破裂风险对于优化脑动脉瘤患者的治疗决策至关重要。虽然计算流体动力学(CFD)为动脉瘤血流动力学提供了关键见解,但大多数分析集中在血流模式上,而忽略了动脉瘤壁的生物力学特性。为了解决这一局限性,我们应用了流固耦合(FSI)分析,这是一种综合方法,可模拟血流动力学与血管壁力学之间的动态相互作用,从而提供更全面的风险评估。在本研究中,我们使用先进的FSI技术来研究大脑中动脉分叉处(MCA)动脉瘤的破裂风险,分析了奥地利林茨开普勒大学医院接受治疗的125例MCA动脉瘤患者。多变量分析确定了两个显著的破裂预测因素:高当量应力面积(HESA;p = 0.049),它量化了相对于动脉瘤表面的应力分布,以及高斯曲率(GLN;p = 0.031),它反映了几何复杂性。我们还引入了HGD指数,这是一种结合HESA、GLN和最大壁位移的新型综合指标,旨在提高预测准确性。以0.075为阈值,HGD指数表现出优异的诊断性能;在内部验证中,25个破裂动脉瘤中有24个超过了该阈值,灵敏度为0.96。在5折交叉验证中,结果的可靠性得到了证实。我们的研究结果表明,与传统的单参数模型相比,HGD指数提供了更好的破裂风险分层,为评估复杂动脉瘤结构提供了更强大的工具。有必要进一步开展多中心研究来完善和验证HGD指数,提高其临床应用潜力并改善患者预后。