Cairo University, National Institute of Cancer, Radiology Department, Cairo, 11796, Egypt.
Cairo University, Computers and Artificial Intelligence, Computer Science Department, Cairo, 12613, Egypt.
Sci Data. 2022 Mar 30;9(1):122. doi: 10.1038/s41597-022-01238-0.
Contrast-enhanced spectral mammography (CESM) is a relatively recent imaging modality with increased diagnostic accuracy compared to digital mammography (DM). New deep learning (DL) models were developed that have accuracies equal to that of an average radiologist. However, most studies trained the DL models on DM images as no datasets exist for CESM images. We aim to resolve this limitation by releasing a Categorized Digital Database for Low energy and Subtracted Contrast Enhanced Spectral Mammography images (CDD-CESM) to evaluate decision support systems. The dataset includes 2006 images, with an average resolution of 2355 × 1315, consisting of 310 mass images, 48 architectural distortion images, 222 asymmetry images, 238 calcifications images, 334 mass enhancement images, 184 non-mass enhancement images, 159 postoperative images, 8 post neoadjuvant chemotherapy images, and 751 normal images, with 248 images having more than one finding. This is the first dataset to incorporate data selection, segmentation annotation, medical reports, and pathological diagnosis for all cases. Moreover, we propose and evaluate a DL-based technique to automatically segment abnormal findings in images.
对比增强光谱乳腺摄影术(CESM)是一种相对较新的成像方式,与数字乳腺摄影术(DM)相比,其诊断准确性更高。新的深度学习(DL)模型已经开发出来,其准确性与平均放射科医生相当。然而,由于没有 CESM 图像的数据集,大多数研究都是在 DM 图像上训练 DL 模型的。我们旨在通过发布一个用于低能量和减影增强光谱乳腺摄影图像的分类数字数据库(CDD-CESM)来解决这个限制,以评估决策支持系统。该数据集包括 2006 张图像,平均分辨率为 2355×1315,其中包括 310 个肿块图像、48 个结构扭曲图像、222 个不对称图像、238 个钙化图像、334 个肿块增强图像、184 个非肿块增强图像、159 个术后图像、8 个新辅助化疗后图像和 751 个正常图像,其中 248 张图像有一个以上的发现。这是第一个纳入所有病例的数据选择、分割注释、医学报告和病理诊断的数据集。此外,我们提出并评估了一种基于深度学习的技术,用于自动分割图像中的异常发现。