Yun Yikai, Chang Qing, Yan Jinjian, Tian Yuanyuan, Jiang Sijie, Wei Wenjie, Li Shaoqun, Guo Yuzheng, Yin Jun, Li Jing, Chen Mengyu, Huang Kai, Li Cheng, Zhang Rong
School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
Sci Adv. 2025 Jan 17;11(3):eadp3112. doi: 10.1126/sciadv.adp3112. Epub 2025 Jan 15.
The utilization of low-dimensional perovskites (LDPs) as interlayers on three-dimensional (3D) perovskites has been regarded as an efficient strategy to enhance the performance of perovskite solar cells. Yet, the formation mechanism of LDPs and their impacts on the device performance remain elusive. Herein, we use dimensional engineering to facilitate the controllable growth of 1D and 2D structures on 3D perovskites. The differences of isomeric ligands in electrostatic potential distribution and steric effects for intermolecular forces contribute to different LDPs. The 1D structure facilitates charge transfer with favored channel orientation and energy level alignment. This approach enables perovskite solar modules (PSMs) using 2,2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene to achieve an efficiency of 20.20% over 10 by 10 square centimeters (cm) and 22.05% over 6 by 6 cm. In particular, a PSM (6 by 6 cm) using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] maintains an initial efficiency of ~95% after 1000 hours under the rigorous ISOS-L-3 accelerated aging tests, marking a record for the highest stability of n-i-p structure modules.
将低维钙钛矿(LDPs)用作三维(3D)钙钛矿的中间层被认为是提高钙钛矿太阳能电池性能的有效策略。然而,LDPs的形成机制及其对器件性能的影响仍然难以捉摸。在此,我们利用维度工程促进1D和2D结构在3D钙钛矿上的可控生长。同分异构体配体在静电势分布和分子间力的空间效应方面的差异导致了不同的LDPs。1D结构有利于电荷转移,具有有利的通道取向和能级排列。这种方法使使用2,2',7,7'-四[,-二(4-甲氧基苯基)氨基]-9,9'-螺二芴的钙钛矿太阳能模块(PSMs)在10×10平方厘米(cm)上实现了20.20%的效率,在6×6 cm上实现了22.05%的效率。特别是,在严格的ISOS-L-3加速老化测试下,使用聚[双(4-苯基)(2,4,6-三甲基苯基)胺]的PSM(6×6 cm)在1000小时后保持了约95%的初始效率,创下了n-i-p结构模块最高稳定性的记录。