Cheng Cheng, Aruchunan Elayaraja, Noor Aziz Muhamad Hifzhudin
Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Department of Decision Science, Faculty of Business and Economics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Sci Rep. 2025 Jan 15;15(1):2043. doi: 10.1038/s41598-025-85440-1.
A dynamics informed neural networks (DINNs) incorporating the susceptible-exposed-infectious-recovered-vaccinated (SEIRV) model was developed to enhance the understanding of the temporal evolution dynamics of infectious diseases. This work integrates differential equations with deep neural networks to predict time-varying parameters in the SEIRV model. Experimental results based on reported data from China between January 1, and December 1, 2022, demonstrate that the proposed dynamics informed neural networks (DINNs) method can accurately learn the dynamics and predict future states. Our proposed hybrid SEIRV-DNNs model can also be applied to other infectious diseases such as influenza and dengue, with some modifications to the compartments and parameters in the model to accommodate the related control measures. This approach will facilitate improving predictive modeling and optimizing public health intervention strategies.
为了更好地理解传染病的时间演变动态,开发了一种结合易感-暴露-感染-康复-接种(SEIRV)模型的动力学信息神经网络(DINNs)。这项工作将微分方程与深度神经网络相结合,以预测SEIRV模型中的时变参数。基于中国2022年1月1日至12月1日报告数据的实验结果表明,所提出的动力学信息神经网络(DINNs)方法能够准确学习动态并预测未来状态。我们提出的混合SEIRV-DNNs模型也可以应用于其他传染病,如流感和登革热,只需对模型中的隔室和参数进行一些修改,以适应相关的控制措施。这种方法将有助于改进预测建模和优化公共卫生干预策略。