Suppr超能文献

利用动态对比磁共振成像进行乳腺肿瘤基因-表型解码的深度放射基因组学测序

Deep Radiogenomics Sequencing for Breast Tumor Gene-Phenotype Decoding Using Dynamic Contrast Magnetic Resonance Imaging.

作者信息

Shiri Isaac, Salimi Yazdan, Mohammadi Kazaj Pooya, Bagherieh Sara, Amini Mehdi, Saberi Manesh Abdollah, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.

K N Toosi University of Technology, Tehran, Tehran, Iran.

出版信息

Mol Imaging Biol. 2025 Feb;27(1):32-43. doi: 10.1007/s11307-025-01981-x. Epub 2025 Jan 15.

Abstract

PURPOSE

We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes.

METHODS

The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis. All images were corrected using N4 bias correction algorithms. Based on all images and tumor masks, a bounding box of 128 × 128 × 68 was chosen to include all tumor regions. All networks were implemented in 3D fashion with input sizes of 128 × 128 × 68, and four images were input to each network for multi-channel analysis. Data were randomly split into train/validation (80%) and test set (20%) with stratification in class (patient-wise), and all metrics were reported in 20% of the untouched test dataset.

RESULTS

For ER prediction, SEResNet50 achieved an AUC mean of 0.695 (CI95%: 0.610-0.775), a sensitivity of 0.564, and a specificity of 0.787. For PR prediction, ResNet34 achieved an AUC mean of 0.658 (95% CI: 0.573-0.741), a sensitivity of 0.593, and a specificity of 0.734. For HER2 prediction, SEResNext101 achieved an AUC mean of 0.698 (95% CI: 0.560-0.822), a sensitivity of 0.750, and a specificity of 0.625.

CONCLUSION

The current study demonstrated the feasibility of imaging gene-phenotype decoding in breast tumors using MR images and deep learning algorithms with moderate performance.

摘要

目的

我们旨在利用动态对比磁共振成像(MRI)对雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体2(HER2)基因进行乳腺癌肿瘤的放射基因组分析。

方法

本研究使用的数据集包括922例经活检确诊的浸润性乳腺癌患者的成像数据以及ER、PR和HER2基因突变状态。纳入分析的乳腺MR图像包括一个T1加权对比前序列和三个对比后序列。所有图像均使用N4偏差校正算法进行校正。基于所有图像和肿瘤掩码,选择一个128×128×68的边界框以包含所有肿瘤区域。所有网络均以三维方式实现,输入大小为128×128×68,每个网络输入四张图像进行多通道分析。数据随机分为训练/验证集(80%)和测试集(20%),并按类别(患者层面)进行分层,所有指标均在20%未触及的测试数据集中报告。

结果

对于ER预测,SEResNet50的AUC均值为0.695(CI95%:0.610 - 0.775),灵敏度为0.564,特异性为0.787。对于PR预测,ResNet34的AUC均值为0.658(95%CI:0.573 - 0.741),灵敏度为0.593,特异性为0.734。对于HER2预测,SEResNext101的AUC均值为0.698(95%CI:0.560 - 0.822),灵敏度为0.750,特异性为0.625。

结论

本研究证明了使用MR图像和深度学习算法在乳腺肿瘤中进行成像基因 - 表型解码的可行性,且性能适中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/122e/11805855/76b87fcbe102/11307_2025_1981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验