Suppr超能文献

IMPACT:基于Y闪存技术的内存计算架构,用于合并式Tsetlin机推理。

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

作者信息

Ghazal Omar, Wang Wei, Kvatinsky Shahar, Merchant Farhad, Yakovlev Alex, Shafik Rishad

机构信息

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

Peng Cheng Laboratory, Shenzhen, People's Republic of China.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jan;383(2288):20230393. doi: 10.1098/rsta.2023.0393. Epub 2025 Jan 16.

Abstract

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process. Y-Flash devices have recently been demonstrated for digital and analogue memory applications; they offer high yield, non-volatility and low power consumption. IMPACT leverages the Y-Flash array to implement the inference of a novel ML algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved [Formula: see text] accuracy. IMPACT demonstrated improvements in energy efficiency, e.g. factors of 2.23 over CNN-based ReRAM, 2.46 over neuromorphic using NOR-Flash and 2.06 over DNN-based phase-change memory (PCM), suited for modern ML inference applications.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.

摘要

机器学习(ML)模型处理大量数据的需求不断增加,已将数据带宽要求推至传统冯·诺依曼架构能力之外。内存计算(IMC)最近作为一种有前景的解决方案出现,通过在微架构层面实现分布式数据存储和处理,显著降低延迟和能耗,以弥补这一差距。在本文中,我们展示了基于Y-Flash技术的内存计算架构用于合并式Tsetlin机推理(IMPACT),其基于在180纳米互补金属氧化物半导体(CMOS)工艺上制造的前沿存储设备Y-Flash。Y-Flash设备最近已在数字和模拟存储应用中得到验证;它们具有高良率、非易失性和低功耗。IMPACT利用Y-Flash阵列实现一种新型ML算法的推理:基于命题逻辑的合并式Tsetlin机(CoTM)。CoTM利用Tsetlin自动机(TA)在并行子句间随机创建布尔特征选择。IMPACT被组织成两个计算交叉开关用于存储TA和权重。通过在MNIST数据集上的验证,IMPACT实现了[公式:见原文]的准确率。IMPACT展示了能源效率的提升,例如相较于基于CNN的ReRAM提高了2.23倍,相较于使用NOR-Flash的神经形态计算提高了2.46倍,相较于基于DNN的相变存储器(PCM)提高了2.06倍,适用于现代ML推理应用。本文是主题为“未来安全计算平台的新兴技术”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3547/11736465/544496cc1480/rsta.2023.0393.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验