Lanza Mario, Waser Rainer, Ielmini Daniele, Yang J Joshua, Goux Ludovic, Suñe Jordi, Kenyon Anthony Joseph, Mehonic Adnan, Spiga Sabina, Rana Vikas, Wiefels Stefan, Menzel Stephan, Valov Ilia, Villena Marco A, Miranda Enrique, Jing Xu, Campabadal Francesca, Gonzalez Mireia B, Aguirre Fernando, Palumbo Felix, Zhu Kaichen, Roldan Juan Bautista, Puglisi Francesco Maria, Larcher Luca, Hou Tuo-Hung, Prodromakis Themis, Yang Yuchao, Huang Peng, Wan Tianqing, Chai Yang, Pey Kin Leong, Raghavan Nagarajan, Dueñas Salvador, Wang Tao, Xia Qiangfei, Pazos Sebastian
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Peter-Grünberg-Institut (PGI-7), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
ACS Nano. 2021 Nov 23;15(11):17214-17231. doi: 10.1021/acsnano.1c06980. Epub 2021 Nov 3.
Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >10 cycles were based on resistance cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device. We recommend not to use such a characterization method because it is highly inaccurate and unreliable (.., it cannot reliably demonstrate that the device effectively switches in every cycle and it ignores cycle-to-cycle and device-to-device variability). This has created a blurry vision of the real performance of RS devices and in many cases has exaggerated their potential. This article proposes and describes a method for the correct characterization of switching endurance in RS devices; this method aims to construct endurance plots showing one data point per cycle and resistive state and combine data from multiple devices. Adopting this recommended method should result in more reliable literature in the field of RS technologies, which should accelerate their integration in commercial products.
电阻开关(RS)器件是新兴的电子元件,可应用于多种类型的集成电路,包括电子存储器、真随机数发生器、射频开关、神经形态视觉传感器和人工神经网络。阻碍RS器件在商业电路中大规模应用的主要因素与可变性和可靠性问题有关,这些问题通常通过开关耐久性测试来评估。然而,我们注意到,大多数声称具有大于10次循环的高耐久性的研究是基于电阻循环图,这些图包含的数据点非常少(在许多情况下甚至小于20个),并且仅在一个器件中收集。我们建议不要使用这种表征方法,因为它非常不准确且不可靠(例如,它不能可靠地证明器件在每个循环中都能有效切换,并且忽略了循环间和器件间的可变性)。这使得人们对RS器件的实际性能产生了模糊的认识,并且在许多情况下夸大了它们的潜力。本文提出并描述了一种正确表征RS器件开关耐久性的方法;该方法旨在构建每个循环和电阻状态显示一个数据点的耐久性图,并结合来自多个器件的数据。采用这种推荐方法应该会在RS技术领域产生更可靠的文献,这将加速它们在商业产品中的集成。