Suppr超能文献

利用显著性和离散余弦变换能量对新冠肺炎患者计算机断层扫描中的肺实质严重程度进行分类

Classification of Severity of Lung Parenchyma Using Saliency and Discrete Cosine Transform Energy in Computed Tomography of Patients With COVID-19.

作者信息

Tello-Mijares Santiago, Flores Francisco, Woo Fomuy

机构信息

Basic Sciences Department, Instituto Tecnológico de la Laguna Tecnológico Nacional de México Campus Laguna, Torreón, Coahuila, Mexico.

Postgraduate Department, Instituto Tecnológico de la Laguna Tecnológico Nacional de México Campus Laguna, Torreón, Coahuila, Mexico.

出版信息

Int J Telemed Appl. 2025 Jan 6;2025:4420410. doi: 10.1155/ijta/4420410. eCollection 2025.

Abstract

This study proposes an automated system for assessing lung damage severity in coronavirus disease 2019 (COVID-19) patients using computed tomography (CT) images. These preprocessed CT images identify the extent of pulmonary parenchyma (PP) and ground-glass opacity and pulmonary infiltrates (GGO-PIs). Two types of images-saliency () image and discrete cosine transform (DCT) energy image-were generated from these images. A final fused (FF) image combining and DCT of PP and GGO-PI images was then obtained. Five convolutional neural networks (CNNs) and five classic classification techniques, trained using FF and grayscale PP images, were tested. Our study is aimed at showing that a CNN model, with preprocessed images as input, has significant advantages over grayscale images. Previous work in this field primarily focused on grayscale images, which presented some limitations. This paper demonstrates how optimal results can be obtained by using the FF image rather than just the grayscale PP image. As a result, CNN models outperformed traditional artificial intelligence classification techniques. Of these, Vgg16Net performed best, delivering top-tier classification results for COVID-19 severity assessment, with a recall rate of 95.38%, precision of 96%, accuracy of 95.84%, and area under the receiver operating characteristic (AUROC) curve of 0.9585; in addition, the Vgg16Net delivers the lowest false negative (FN) results. The dataset, comprising 44 COVID-19 patients, was split equally, with half used for training and half for testing.

摘要

本研究提出了一种利用计算机断层扫描(CT)图像评估2019冠状病毒病(COVID-19)患者肺损伤严重程度的自动化系统。这些预处理后的CT图像可识别肺实质(PP)的范围以及磨玻璃影和肺浸润(GGO-PI)。从这些图像中生成了两种类型的图像——显著性()图像和离散余弦变换(DCT)能量图像。然后获得了结合PP和GGO-PI图像的显著性和DCT的最终融合(FF)图像。测试了使用FF图像和灰度PP图像训练的五个卷积神经网络(CNN)和五种经典分类技术。我们的研究旨在表明,以预处理图像作为输入的CNN模型比灰度图像具有显著优势。该领域以前的工作主要集中在灰度图像上,存在一些局限性。本文展示了如何通过使用FF图像而非仅仅灰度PP图像来获得最佳结果。结果,CNN模型的表现优于传统人工智能分类技术。其中,Vgg16Net表现最佳,在COVID-19严重程度评估中提供了顶级分类结果,召回率为95.38%,精确率为96%,准确率为95.84%,接收器操作特征(AUROC)曲线下面积为0.9585;此外,Vgg16Net产生的假阴性(FN)结果最低。该数据集包含44名COVID-19患者,被平均分成两半,一半用于训练,一半用于测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8029/11729514/b0930de25f37/IJTA2025-4420410.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验