Suppr超能文献

在一个黑豆育种群体中,利用全基因组关联研究辅助和多性状基因组预测来改良种子产量和罐头品质性状。

GWAS-assisted and multitrait genomic prediction for improvement of seed yield and canning quality traits in a black bean breeding panel.

作者信息

Izquierdo Paulo, Wright Evan M, Cichy Karen

机构信息

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.

USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, MI 48824, USA.

出版信息

G3 (Bethesda). 2025 Mar 18;15(3). doi: 10.1093/g3journal/jkaf007.

Abstract

In recent years, black beans (Phaseolus vulgaris L.) have gained popularity in the United States, with improved seed yield and canning quality being critical traits for new cultivars. Achieving genetic gains in these traits is often challenging due to negative trait associations and the need for specialized equipment and trained sensory panels for evaluation. This study investigates the integration of genomics and phenomics to enhance selection accuracy for these complex traits. We evaluated the prediction accuracy of single-trait (ST) and multitrait (MT) genomic prediction (GP) models, incorporating near-infrared spectroscopy (NIRS) data and markers identified through genome-wide association studies (GWAS). The models demonstrated moderate prediction accuracies for yield and canning appearance (App) and high accuracies for color retention. No significant differences were found between ST and MT models within the same breeding cycle. However, across breeding cycles, MT models outperformed ST models by up to 45 and 63% for canning App and seed yield, respectively. Interestingly, incorporating significant SNP markers identified by GWAS and NIRS data into the models tended to decrease prediction accuracy both within and between breeding cycles. As genotypes from the new breeding cycle were included, the models' prediction accuracy generally increased. Our findings underscore the potential of MT models to enhance the prediction of complex traits such as seed yield and canning quality in dry beans and highlight the importance of continually updating the training dataset for effective GP implementation in dry bean breeding.

摘要

近年来,黑豆(菜豆)在美国越来越受欢迎,种子产量提高和罐头加工品质是新品种的关键性状。由于性状之间存在负相关,且需要专门的设备和经过培训的感官评定小组进行评估,在这些性状上实现遗传增益往往具有挑战性。本研究调查了基因组学和表型组学的整合,以提高对这些复杂性状的选择准确性。我们评估了单性状(ST)和多性状(MT)基因组预测(GP)模型的预测准确性,纳入了近红外光谱(NIRS)数据和通过全基因组关联研究(GWAS)鉴定的标记。这些模型对产量和罐头外观(App)的预测准确性中等,对颜色保留的预测准确性较高。在同一育种周期内,ST模型和MT模型之间未发现显著差异。然而,在不同育种周期中,MT模型在罐头外观和种子产量方面分别比ST模型高出45%和63%。有趣的是,将GWAS鉴定的显著单核苷酸多态性(SNP)标记和NIRS数据纳入模型,在育种周期内和不同育种周期之间往往会降低预测准确性。随着新育种周期的基因型被纳入,模型的预测准确性总体上有所提高。我们的研究结果强调了MT模型在提高干豆种子产量和罐头加工品质等复杂性状预测方面的潜力,并突出了持续更新训练数据集对于在干豆育种中有效实施GP的重要性。

相似文献

9
Genomic and phenomic prediction for soybean seed yield, protein, and oil.
Plant Genome. 2025 Mar;18(1):e70002. doi: 10.1002/tpg2.70002.

本文引用的文献

3
Multitrait Bayesian shrinkage and variable selection models with the BGLR-R package.
Genetics. 2022 Aug 30;222(1). doi: 10.1093/genetics/iyac112.
5
Accounting for Correlation Between Traits in Genomic Prediction.
Methods Mol Biol. 2022;2467:285-327. doi: 10.1007/978-1-0716-2205-6_10.
6
Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices.
Heredity (Edinb). 2021 Nov;127(5):423-432. doi: 10.1038/s41437-021-00474-1. Epub 2021 Sep 25.
7
GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction.
Genomics Proteomics Bioinformatics. 2021 Aug;19(4):629-640. doi: 10.1016/j.gpb.2021.08.005. Epub 2021 Sep 4.
8
The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data.
Front Plant Sci. 2021 Apr 16;12:651480. doi: 10.3389/fpls.2021.651480. eCollection 2021.
9
Genetic Analyses and Genomic Predictions of Root Rot Resistance in Common Bean Across Trials and Populations.
Front Plant Sci. 2021 Mar 12;12:629221. doi: 10.3389/fpls.2021.629221. eCollection 2021.
10
Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean ( L.).
Front Plant Sci. 2021 Feb 11;11:622213. doi: 10.3389/fpls.2020.622213. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验