Suppr超能文献

基因组预测中性状间相关性的考量

Accounting for Correlation Between Traits in Genomic Prediction.

作者信息

Montesinos-López Osval Antonio, Montesinos-López Abelardo, Mosqueda-Gonzalez Brandon A, Montesinos-López José Cricelio, Crossa José

机构信息

Facultad de Telemática, Universidad de Colima, Colima, Mexico.

Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.

出版信息

Methods Mol Biol. 2022;2467:285-327. doi: 10.1007/978-1-0716-2205-6_10.

Abstract

Genomic enabled prediction is playing a key role for the success of genomic selection (GS). However, according to the No Free Lunch Theorem, there is not a universal model that performs well for all data sets. Due to this, many statistical and machine learning models are available for genomic prediction. When multitrait data is available, models that are able to account for correlations between phenotypic traits are preferred, since these models help increase the prediction accuracy when the degree of correlation is moderate to large. For this reason, in this chapter we review multitrait models for genome-enabled prediction and we illustrate the power of this model with real examples. In addition, we provide details of the software (R code) available for its application to help users implement these models with its own data. The multitrait models were implemented under conventional Bayesian Ridge regression and best linear unbiased predictor, but also under a deep learning framework. The multitrait deep learning framework helps implement prediction models with mixed outcomes (continuous, binary, ordinal, and count, measured on different scales), which is not easy in conventional statistical models. The illustrative examples are very detailed in order to make the implementation of multitrait models in plant and animal breeding friendlier for breeders and scientists.

摘要

基因组辅助预测在基因组选择(GS)的成功中起着关键作用。然而,根据无免费午餐定理,不存在一个对所有数据集都表现良好的通用模型。因此,有许多统计和机器学习模型可用于基因组预测。当有多性状数据可用时,能够考虑表型性状之间相关性的模型更受青睐,因为当相关程度为中度到高度时,这些模型有助于提高预测准确性。出于这个原因,在本章中,我们回顾用于基因组辅助预测的多性状模型,并通过实际例子说明该模型的强大之处。此外,我们提供了可用于其应用的软件(R代码)的详细信息,以帮助用户使用自己的数据实现这些模型。多性状模型是在传统贝叶斯岭回归和最佳线性无偏预测器下实现的,同时也在深度学习框架下实现。多性状深度学习框架有助于实现具有混合结果(连续、二元、有序和计数,在不同尺度上测量)的预测模型,这在传统统计模型中并不容易。为了使植物和动物育种中的多性状模型对育种者和科学家来说更易于实施,示例非常详细。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验