文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过深度迁移图卷积网络整合非配对单细胞组学数据

Integration of unpaired single cell omics data by deep transfer graph convolutional network.

作者信息

Kan Yulong, Qi Yunjing, Zhang Zhongxiao, Liang Xikeng, Wang Weihao, Jin Shuilin

机构信息

School of Mathematics/Harbin Institute of Technology, Harbin, China.

出版信息

PLoS Comput Biol. 2025 Jan 16;21(1):e1012625. doi: 10.1371/journal.pcbi.1012625. eCollection 2025 Jan.


DOI:10.1371/journal.pcbi.1012625
PMID:39821189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11778791/
Abstract

The rapid advance of large-scale atlas-level single cell RNA sequences and single-cell chromatin accessibility data provide extraordinary avenues to broad and deep insight into complex biological mechanism. Leveraging the datasets and transfering labels from scRNA-seq to scATAC-seq will empower the exploration of single-cell omics data. However, the current label transfer methods have limited performance, largely due to the lower capable of preserving fine-grained cell populations and intrinsic or extrinsic heterogeneity between datasets. Here, we present a robust deep transfer model based graph convolutional network, scTGCN, which achieves versatile performance in preserving biological variation, while achieving integration hundreds of thousands cells in minutes with low memory consumption. We show that scTGCN is powerful to the integration of mouse atlas data and multimodal data generated from APSA-seq and CITE-seq. Thus, scTGCN shows high label transfer accuracy and effectively knowledge transfer across different modalities.

摘要

大规模图谱级单细胞RNA序列和单细胞染色质可及性数据的迅速发展,为深入洞察复杂的生物学机制提供了非凡途径。利用这些数据集并将标签从scRNA-seq转移到scATAC-seq,将有助于探索单细胞组学数据。然而,当前的标签转移方法性能有限,这在很大程度上是因为在保留细粒度细胞群体以及数据集之间的内在或外在异质性方面能力较低。在此,我们提出了一种基于图卷积网络的强大深度转移模型scTGCN,它在保留生物学变异方面具有通用性能,同时能在数分钟内整合数十万个细胞且内存消耗低。我们表明,scTGCN对于整合小鼠图谱数据以及由APSA-seq和CITE-seq生成的多模态数据非常有效。因此,scTGCN显示出高标签转移准确性,并能在不同模态间有效地进行知识转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/8dcd3612468f/pcbi.1012625.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/482e6c6e2ef2/pcbi.1012625.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/35bbc1850ac4/pcbi.1012625.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/74b9d7431dcb/pcbi.1012625.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/5856513827d3/pcbi.1012625.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/8dcd3612468f/pcbi.1012625.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/482e6c6e2ef2/pcbi.1012625.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/35bbc1850ac4/pcbi.1012625.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/74b9d7431dcb/pcbi.1012625.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/5856513827d3/pcbi.1012625.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f460/11778791/8dcd3612468f/pcbi.1012625.g005.jpg

相似文献

[1]
Integration of unpaired single cell omics data by deep transfer graph convolutional network.

PLoS Comput Biol. 2025-1-16

[2]
scRGCL: a cell type annotation method for single-cell RNA-seq data using residual graph convolutional neural network with contrastive learning.

Brief Bioinform. 2024-11-22

[3]
Integrating scRNA-seq and scATAC-seq with inter-type attention heterogeneous graph neural networks.

Brief Bioinform. 2024-11-22

[4]
A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq.

Adv Sci (Weinh). 2024-8

[5]
scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics.

Nat Commun. 2021-6-22

[6]
scCorrect: Cross-modality label transfer from scRNA-seq to scATAC-seq using domain adaptation.

Anal Biochem. 2025-7

[7]
Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis.

Brief Bioinform. 2024-9-23

[8]
scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning.

Nat Biotechnol. 2022-5

[9]
scNCL: transferring labels from scRNA-seq to scATAC-seq data with neighborhood contrastive regularization.

Bioinformatics. 2023-8-1

[10]
Structure-preserved integration of scRNA-seq data using heterogeneous graph neural network.

Brief Bioinform. 2024-9-23

引用本文的文献

[1]
CellWalker2: Multi-omic discovery using hierarchical cell type relationships.

Cell Genom. 2025-7-9

本文引用的文献

[1]
Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets.

Nat Comput Sci. 2022-5

[2]
scapGNN: A graph neural network-based framework for active pathway and gene module inference from single-cell multi-omics data.

PLoS Biol. 2023-11

[3]
Multimodal deep learning approaches for single-cell multi-omics data integration.

Brief Bioinform. 2023-9-20

[4]
sciCAN: single-cell chromatin accessibility and gene expression data integration via cycle-consistent adversarial network.

NPJ Syst Biol Appl. 2022-9-12

[5]
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis.

Brief Bioinform. 2022-9-20

[6]
GLOBE: a contrastive learning-based framework for integrating single-cell transcriptome datasets.

Brief Bioinform. 2022-9-20

[7]
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously.

Genome Biol. 2022-6-27

[8]
DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data.

Brief Bioinform. 2022-7-18

[9]
Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.

Nat Biotechnol. 2022-10

[10]
scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning.

Nat Biotechnol. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索