Suppr超能文献

scDART:同时整合未配对的 scRNA-seq 和 scATAC-seq 数据并学习跨模态关系。

scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously.

机构信息

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, 30308, GA, USA.

Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.

出版信息

Genome Biol. 2022 Jun 27;23(1):139. doi: 10.1186/s13059-022-02706-x.

Abstract

It is a challenging task to integrate scRNA-seq and scATAC-seq data obtained from different batches. Existing methods tend to use a pre-defined gene activity matrix to convert the scATAC-seq data into scRNA-seq data. The pre-defined gene activity matrix is often of low quality and does not reflect the dataset-specific relationship between the two data modalities. We propose scDART, a deep learning framework that integrates scRNA-seq and scATAC-seq data and learns cross-modalities relationships simultaneously. Specifically, the design of scDART allows it to preserve cell trajectories in continuous cell populations and can be applied to trajectory inference on integrated data.

摘要

将来自不同批次的 scRNA-seq 和 scATAC-seq 数据整合在一起是一项具有挑战性的任务。现有的方法往往使用预定义的基因活性矩阵将 scATAC-seq 数据转换为 scRNA-seq 数据。然而,这种预定义的基因活性矩阵通常质量较低,并且不能反映两种数据模式之间的数据集特定关系。我们提出了 scDART,这是一种深度学习框架,可整合 scRNA-seq 和 scATAC-seq 数据,并同时学习跨模态关系。具体来说,scDART 的设计使其能够在连续的细胞群体中保留细胞轨迹,并且可以应用于整合数据的轨迹推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d48/9238247/fc2c490c7f5e/13059_2022_2706_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验