Suppr超能文献

榴莲:单细胞转录组数据分析稳健信号分析的集成去卷积和插补方法。

DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data.

机构信息

Department of Mathematics.

Department of Cell and Developmental Biology.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac223.

Abstract

Single-cell RNA sequencing trades read-depth for dimensionality, often leading to loss of critical signaling gene information that is typically present in bulk data sets. We introduce DURIAN (Deconvolution and mUltitask-Regression-based ImputAtioN), an integrative method for recovery of gene expression in single-cell data. Through systematic benchmarking, we demonstrate the accuracy, robustness and empirical convergence of DURIAN using both synthetic and published data sets. We show that use of DURIAN improves single-cell clustering, low-dimensional embedding, and recovery of intercellular signaling networks. Our study resolves several inconsistent results of cell-cell communication analysis using single-cell or bulk data independently. The method has broad application in biomarker discovery and cell signaling analysis using single-cell transcriptomics data sets.

摘要

单细胞 RNA 测序以读取深度换取维度,这通常会导致关键信号基因信息的丢失,而这些信息通常存在于批量数据集。我们引入了 DURIAN(基于去卷积和多任务回归的推断),这是一种用于恢复单细胞数据中基因表达的综合方法。通过系统的基准测试,我们使用合成和已发表数据集展示了 DURIAN 的准确性、鲁棒性和经验收敛性。我们表明,使用 DURIAN 可以改善单细胞聚类、低维嵌入和细胞间信号网络的恢复。我们的研究解决了使用单细胞或批量数据进行细胞间通讯分析时的几个不一致结果。该方法在使用单细胞转录组数据集进行生物标志物发现和细胞信号分析方面具有广泛的应用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验