Lu Jiaqing, Wang Yukang, McCallum Terry, Fu Niankai
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
iScience. 2020 Nov 11;23(12):101796. doi: 10.1016/j.isci.2020.101796. eCollection 2020 Dec 18.
The merger of transition metal catalysis and electroorganic synthesis has recently emerged as a versatile platform for the development of highly enabling radical reactions in a sustainable fashion. Electrochemistry provides access to highly reactive radical species under extremely mild reaction conditions from abundant native functionalities. Transition metal catalysts can be used as redox-active electrocatalysts to shuttle electrons, chiral information to organic substrates, and the reactive intermediates in the electrolytic systems. The combination of these strategies in this mechanistic paradigm thus makes the generation and utilization of radical species in a chemoselective manner and allows further application to more synthetically attractive enantioselective radical transformations. This perspective discusses key advances over the past few years in the field of electrochemical transition metal catalysis and demonstrates how the unique features of this strategy permit challenging or previously elusive transformations via radical pathways to be successfully achieved.
过渡金属催化与有机电合成的结合最近已成为一个通用平台,能够以可持续的方式开发高度有效的自由基反应。电化学可在极其温和的反应条件下,从丰富的天然官能团中获得高活性自由基物种。过渡金属催化剂可用作氧化还原活性电催化剂,用于传递电子、将手性信息传递给有机底物以及电解体系中的反应中间体。因此,在这种机理范式中,这些策略的结合能够以化学选择性的方式生成和利用自由基物种,并允许进一步应用于更具合成吸引力的对映选择性自由基转化。本文综述了过去几年电化学过渡金属催化领域的关键进展,并展示了该策略的独特特性如何使具有挑战性或以前难以实现的通过自由基途径的转化得以成功实现。