Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL.
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL.
Lancet Digit Health. 2019 Sep;1(5):e222-e231. doi: 10.1016/s2589-7500(19)30105-0. Epub 2019 Aug 27.
There is a critical need to develop valid, non-invasive biomarkers for Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes.
We used dMRI from 1002 subjects, along with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), to develop and validate disease-specific machine learning comparisons using 60 template regions and tracts of interest in Montreal Neurological Institute (MNI) space between Parkinson's disease (PD) and Atypical Parkinsonism (multiple system atrophy - MSA, progressive supranuclear palsy - PSP), as well as between MSA and PSP. For each comparison, models were developed on a training/validation cohort and evaluated in a test cohort by quantifying the area under the curve (AUC) of receiving operating characteristic (ROC) curves.
In the test cohort for both disease-specific comparisons, AUCs were high in the dMRI + MDS-UPDRS (PD vs. Atypical Parkinsonism: 0·962; MSA vs. PSP: 0·897) and dMRI Only (PD vs. Atypical Parkinsonism: 0·955; MSA vs. PSP: 0·926) models, whereas the MDS-UPDRS III Only models had significantly lower AUCs (PD vs. Atypical Parkinsonism: 0·775; MSA vs. PSP: 0·582).
This study provides an objective, validated, and generalizable imaging approach to distinguish different forms of Parkinsonian syndromes using multi-site dMRI cohorts. The dMRI method does not involve radioactive tracers, is completely automated, and can be collected in less than 12 minutes across 3T scanners worldwide. The use of this test could thus positively impact the clinical care of patients with Parkinson's disease and Parkinsonism as well as reduce the number of misdiagnosed cases in clinical trials.
开发有效的、非侵入性的帕金森综合征生物标志物具有重要意义。本项在 17 个研究中心开展的国际研究旨在评估非侵入性弥散磁共振成像(dMRI)是否可用于区分帕金森综合征。
我们使用了来自 1002 名受试者的 dMRI 数据,结合运动障碍协会统一帕金森病评定量表第三部分(MDS-UPDRS III),采用 60 个模板区域和蒙特利尔神经学研究所(MNI)感兴趣区的纤维束,开发并验证了基于机器学习的疾病特异性比较,这些比较用于区分帕金森病(PD)与非典型帕金森综合征(多系统萎缩 - MSA、进行性核上性麻痹 - PSP)以及 MSA 与 PSP。对于每种比较,我们在训练/验证队列中建立模型,并通过计算接受者操作特征(ROC)曲线下面积(AUC)在测试队列中进行评估。
在测试队列中,对于这两种疾病特异性比较,dMRI + MDS-UPDRS(PD 与非典型帕金森综合征:0.962;MSA 与 PSP:0.897)和 dMRI 单独(PD 与非典型帕金森综合征:0.955;MSA 与 PSP:0.926)模型的 AUC 值均较高,而 MDS-UPDRS III 单独模型的 AUC 值显著较低(PD 与非典型帕金森综合征:0.775;MSA 与 PSP:0.582)。
本研究提供了一种客观、验证和可推广的影像学方法,可使用多中心 dMRI 队列区分不同形式的帕金森综合征。该 dMRI 方法不涉及放射性示踪剂,完全自动化,并且可以在全球范围内的 3T 扫描仪上在不到 12 分钟的时间内采集。因此,该测试的使用可以积极影响帕金森病和帕金森综合征患者的临床护理,并减少临床试验中的误诊病例数量。