Duddella Kalpak, Thompson Kamila, Haseman Micah, Brillson Leonard J
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Department of Electrical & Computer Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Omega. 2024 Dec 19;10(1):703-708. doi: 10.1021/acsomega.4c07595. eCollection 2025 Jan 14.
Piezovoltages generated by ZnO nano/microwire bending and strain enable electronic biogenerators that harvest human body movement to power-implanted biomedical devices. Currently, low voltages generated by these biogenerators limit their use to replace today's biomedical batteries. Electrically charged native point defects inside ZnO microwires can control these macroscopic piezo voltages, generating transverse electric fields that couple with strained wires' lengthwise piezoelectric fields so they redistribute spatially and change voltage output. Cathodoluminescence spectroscopy inside a scanning electron microscope correlates tip voltages directly with native point defect distributions of individual ZnO microwires in three dimensions. Spatial distributions of common Cu antisites in ZnO extending throughout their length correlate this defect's acceptor nature and distribution directly with piezoelectric potential, revealing how they can control the tip piezovoltage of ZnO microwire-based nanogenerators, identifying specific defects to increase device output, and suggesting growth and processing treatments to create these defects.
氧化锌纳米/微线弯曲和应变产生的压电电压能够实现电子生物发电机,该发电机可收集人体运动能量以为植入式生物医学设备供电。目前,这些生物发电机产生的低电压限制了它们用于替代当今生物医学电池的用途。氧化锌微线内部带电的本征点缺陷可控制这些宏观压电电压,产生横向电场,该横向电场与应变微线的纵向压电场耦合,从而使它们在空间上重新分布并改变电压输出。扫描电子显微镜内的阴极发光光谱法可将尖端电压与单个氧化锌微线在三维空间中的本征点缺陷分布直接关联起来。氧化锌中常见的铜反位在其整个长度上的空间分布将该缺陷的受主性质和分布与压电势直接关联起来,揭示了它们如何控制基于氧化锌微线的纳米发电机的尖端压电电压,确定了可提高器件输出的特定缺陷,并提出了产生这些缺陷的生长和加工处理方法。