Suppr超能文献

单细胞追踪细菌细胞表面细胞色素揭示了影响长距离电子传递的动力学。

Single molecule tracking of bacterial cell surface cytochromes reveals dynamics that impact long-distance electron transport.

机构信息

Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089.

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089.

出版信息

Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2119964119. doi: 10.1073/pnas.2119964119. Epub 2022 May 3.

Abstract

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.

摘要

利用一系列多血红素细胞色素,金属还原细菌希瓦氏菌 MR-1 可以进行细胞外电子转移 (EET),以呼吸氧化还原活性表面,包括细胞外的矿物质和电极。虽然多血红素细胞色素在穿过细胞壁传输电子方面的作用已得到充分证实,但这些细胞色素最近也被发现有助于在外膜和跨多个细胞桥接电极上进行长距离(微米级)氧化还原传导。最近的研究提出,长距离传导源于电子跳跃和细胞色素扩散的相互作用,这允许电子在膜之间的细胞色素之间发生碰撞和电子交换。然而,多血红素细胞色素的扩散动力学从未在体内被观察或量化过,因此很难评估它们对碰撞交换机制的假设贡献。在这里,我们使用量子点标记、全内反射荧光显微镜和单粒子跟踪来量化外膜相关 decaheme 细胞色素 MtrC 和 OmcA 的侧向扩散动力学,这两种细胞色素是 S. oneidensis 中 EET 的关键组成部分。我们观察到量子点标记的 MtrC 和 OmcA 在细胞表面(扩散系数 DMtrC = 0.0192 ± 0.0018 µm2/s,DOmcA = 0.0125 ± 0.0024 µm2/s)和被认为作为细菌纳米线的膜延伸处表现出受限扩散行为。我们发现,这些动力学可以通过细胞色素轨迹的重叠为电子传输追踪一条路径,这与长距离传导机制一致。测量的动力学信息为结合直接电子跳跃和氧化还原分子扩散的动力学蒙特卡罗模拟提供了信息,揭示了沿着细胞和膜纳米线的显著电子传输速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fba/9171617/6ac1c54a1439/pnas.2119964119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验