Suppr超能文献

通过机器学习影像组学预测早期肺腺癌的气腔播散:一项跨中心队列研究

Prediction of early lung adenocarcinoma spread through air spaces by machine learning radiomics: a cross-center cohort study.

作者信息

Liu Cong, Meng Ao, Xue Xiu-Qing, Wang Yu-Feng, Jia Chao, Yao Da-Peng, Wu Yun-Jian, Huang Qian, Gong Ping, Li Xiao-Feng

机构信息

Department of Minimally Invasive Oncology, Xuzhou New Health Geriatric Hospital, Xuzhou, China.

School of Medical Imaging, Xuzhou Medical University, Xuzhou, China.

出版信息

Transl Lung Cancer Res. 2024 Dec 31;13(12):3443-3459. doi: 10.21037/tlcr-24-565. Epub 2024 Dec 27.

Abstract

BACKGROUND

Sublobar resection is suitable for peripheral stage I lung adenocarcinoma (LUAD). However, if tumor spread through air spaces (STAS) present, the lobectomy will be considered for a survival benefit. Therefore, STAS status guide peripheral stage I LUAD surgical approach. This study aimed to identify radiological features associated with STAS in peripheral stage I LUAD and to develop a predictive machine learning (ML) model using radiomics to improve surgical decision-making for thoracic surgeons.

METHODS

We conducted a retrospective analysis of patients who underwent surgical treatment for lung tumors from January 2022 to December 2023, focusing on clinical peripheral stage I LUAD. High-resolution computed tomography (CT) scans were used to extract 1,581 radiomics features. Least absolute shrinkage and selection operator (LASSO) regression was applied to select the most relevant features for predicting STAS, reducing model overfitting and enhancing predictability. Ten ML algorithms were evaluated using performance metrics such as area under the receiver operating characteristic curve (AUROC), accuracy, recall, F1-score, and Matthews Correlation Coefficient (MCC) after a 10-fold cross-validation process. SHapley Additive exPlanations (SHAP) values were calculated to provide interpretability and illustrate the contribution of individual features to the model's predictions. Additionally, a user-friendly web application was developed to enable clinicians to use these predictive models in real-time for assessing the risk of STAS.

RESULTS

The study identified significant associations between STAS and radiological features, including the longest diameter, consolidation-to-tumor ratio (CTR), and the presence of spiculation. The Random Forest (RF) model for 3-mm peritumoral extensions demonstrated strong predictive performance, with a Recall_Mean of 0.717, Accuracy_Mean of 0.891, F1-Score_Mean of 0.758, MCC_Mean of 0.708, and an AUROC_Mean of 0.944. SHAP analyses highlighted the influential radiomics features, enhancing our understanding of the model's decision-making process.

CONCLUSIONS

The RF model, employing specific intratumoral and 3-mm peritumoral radiomics features, was highly effective in predicting STAS in peripheral stage I LUAD. This model is recommended for clinical use to optimize surgical strategies for LUAD patients, supported by a real-time web application for STAS risk assessment.

摘要

背景

亚肺叶切除术适用于外周I期肺腺癌(LUAD)。然而,如果存在气腔播散(STAS),则会考虑行肺叶切除术以获得生存益处。因此,STAS状态指导外周I期LUAD的手术方式。本研究旨在确定外周I期LUAD中与STAS相关的影像学特征,并开发一种使用放射组学的预测性机器学习(ML)模型,以改善胸外科医生的手术决策。

方法

我们对2022年1月至2023年12月接受肺部肿瘤手术治疗的患者进行了回顾性分析,重点关注临床外周I期LUAD。使用高分辨率计算机断层扫描(CT)扫描提取1581个放射组学特征。应用最小绝对收缩和选择算子(LASSO)回归来选择预测STAS最相关的特征,减少模型过拟合并提高预测能力。在10倍交叉验证过程后,使用诸如受试者操作特征曲线下面积(AUROC)、准确率、召回率、F1分数和马修斯相关系数(MCC)等性能指标评估10种ML算法。计算SHapley加性解释(SHAP)值以提供可解释性,并说明各个特征对模型预测的贡献。此外,开发了一个用户友好的网络应用程序,使临床医生能够实时使用这些预测模型来评估STAS风险。

结果

该研究确定了STAS与影像学特征之间的显著关联,包括最长径、实变与肿瘤比值(CTR)以及毛刺征的存在。针对3mm肿瘤周围扩展的随机森林(RF)模型表现出强大的预测性能,召回率均值为0.717,准确率均值为0.891,F1分数均值为0.758,MCC均值为0.708,AUROC均值为0.944。SHAP分析突出了有影响的放射组学特征,增强了我们对模型决策过程的理解。

结论

采用特定肿瘤内和3mm肿瘤周围放射组学特征的RF模型在预测外周I期LUAD的STAS方面非常有效。该模型推荐用于临床,以优化LUAD患者的手术策略,并得到一个用于STAS风险评估的实时网络应用程序的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验