Suppr超能文献

评价机器学习方法在药物计量学中协变量数据插补中的应用。

Evaluation of machine learning methods for covariate data imputation in pharmacometrics.

机构信息

Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Dec;11(12):1638-1648. doi: 10.1002/psp4.12874. Epub 2022 Nov 8.

Abstract

Missing data create challenges in clinical research because they lead to loss of statistical power and potentially to biased results. Missing covariate data must be handled with suitable approaches to prepare datasets for pharmacometric analyses, such as population pharmacokinetic and pharmacodynamic analyses. To this end, various statistical methods have been widely adopted. Here, we introduce two machine-learning (ML) methods capable of imputing missing covariate data in a pharmacometric setting. Based on a previously published pharmacometric analysis, we simulated multiple missing data scenarios. We compared the performance of four established statistical methods, listwise deletion, mean imputation, standard multiple imputation (hereafter "Norm"), and predictive mean matching (PMM) and two ML based methods, random forest (RF) and artificial neural networks (ANNs), to handle missing covariate data in a statistically plausible manner. The investigated ML-based methods can be used to impute missing covariate data in a pharmacometric setting. Both traditional imputation approaches and ML-based methods perform well in the scenarios studied, with some restrictions for individual methods. The three methods exhibiting the best performance in terms of least bias for the investigated scenarios are the statistical method PMM and the two ML-based methods RF and ANN. ML-based approaches had comparable good results to the best performing established method PMM. Furthermore, ML methods provide added flexibility when encountering more complex nonlinear relationships, especially when associated parameters are suitably tuned to enhance predictive performance.

摘要

缺失数据给临床研究带来了挑战,因为它们会导致统计效能的损失,并可能导致有偏差的结果。必须采用合适的方法处理缺失协变量数据,以便为药代动力学和药效学分析等群体药代动力学分析准备数据集。为此,已经广泛采用了各种统计方法。在这里,我们介绍两种能够在药代动力学环境中推断缺失协变量数据的机器学习 (ML) 方法。基于先前发表的药代动力学分析,我们模拟了多种缺失数据情况。我们比较了四种已建立的统计方法(列表删除、均值插补、标准多重插补(简称“Norm”)和预测均值匹配(PMM))以及两种基于 ML 的方法(随机森林(RF)和人工神经网络(ANNs))在统计学上合理地处理缺失协变量数据的性能。研究中调查的基于 ML 的方法可用于以统计学上合理的方式推断药代动力学环境中的缺失协变量数据。传统的插补方法和基于 ML 的方法在研究的场景中表现良好,但是对于个别方法存在一些限制。在所研究的场景中,在最小偏差方面表现最好的三种方法是统计方法 PMM 和基于 ML 的两种方法 RF 和 ANN。基于 ML 的方法与表现最佳的传统方法 PMM 具有相当好的结果。此外,当遇到更复杂的非线性关系时,ML 方法提供了附加的灵活性,尤其是当相关参数适当调整以增强预测性能时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83dc/9755916/8c87cddce705/PSP4-11-1638-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验