Suppr超能文献

利用人工智能心电图对心脏重症监护病房患者高钾血症进行死亡风险分层

Mortality Risk Stratification Utilizing Artificial Intelligence Electrocardiogram for Hyperkalemia in Cardiac Intensive Care Unit Patients.

作者信息

Harmon David M, Heinrich Chris K, Dillon John J, Carter Rickey E, Kashani Kianoush B, Attia Zachi I, Friedman Paul A, Jentzer Jacob C

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.

Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.

出版信息

JACC Adv. 2024 Aug 21;3(9):101169. doi: 10.1016/j.jacadv.2024.101169. eCollection 2024 Sep.

Abstract

BACKGROUND

Hyperkalemia has been associated with increased mortality in cardiac intensive care unit (CICU) patients. An artificial intelligence (AI) enhanced electrocardiogram (ECG) can predict hyperkalemia, and other AI-ECG algorithms have demonstrated mortality risk-stratification in CICU patients.

OBJECTIVES

The authors hypothesized that the AI-ECG hyperkalemia algorithm could stratify mortality risk beyond laboratory serum potassium measurement alone.

METHODS

We included 11,234 unique Mayo Clinic CICU patients admitted from 2007 to 2018 with a 12-lead ECG and blood potassium (K) level obtained at admission with K ≥5 mEq/L defining hyperkalemia. ECGs underwent AI evaluation for the probability of hyperkalemia (probability >0.5 defined as positive). Hospital mortality was analyzed using logistic regression, and survival to 1 year was estimated using Kaplan-Meier and Cox analysis.

RESULTS

In the final cohort (n = 11,234), the mean age was 69.6 ± 10.5 years, 37.8% were females, and 92.4% were White. Chronic kidney disease was present in 20.2%. The mean laboratory potassium value for the cohort was 4.2 ± 0.3 mEq/L. The AI-ECG predicted hyperkalemia in 33.9% (n = 3,810) of CICU patients and 12.9% (n = 1,451) of patients had laboratory-confirmed hyperkalemia (K ≥5 mEq/L). In-hospital mortality increased in false-positive, false-negative, and true-positive patients, respectively ( < 0.001), and each of these patient groups had successively lower survival out to 1 year.

CONCLUSIONS

AI-ECG-based prediction of hyperkalemia, even with a normal laboratory potassium value, was associated with higher in-hospital mortality and lower 1-year survival in CICU patients. This study demonstrated that AI-ECG probability of hyperkalemia may enable rapid individualized risk stratification in critically ill patients beyond laboratory value alone.

摘要

背景

高钾血症与心脏重症监护病房(CICU)患者死亡率增加相关。人工智能(AI)增强型心电图(ECG)可预测高钾血症,且其他AI-ECG算法已证明可对CICU患者进行死亡风险分层。

目的

作者假设AI-ECG高钾血症算法能够在仅依据实验室血清钾测量结果之外,进一步对死亡风险进行分层。

方法

我们纳入了2007年至2018年期间梅奥诊所CICU收治的11234例患者,这些患者入院时均进行了12导联心电图检查并测定了血钾(K)水平,血钾≥5 mEq/L定义为高钾血症。对心电图进行AI评估以确定高钾血症的概率(概率>0.5定义为阳性)。采用逻辑回归分析住院死亡率,使用Kaplan-Meier法和Cox分析估计1年生存率。

结果

在最终队列(n = 11234)中,平均年龄为69.6±10.5岁,女性占37.8%,白人占92.4%。20.2%的患者存在慢性肾脏病。该队列的平均实验室血钾值为4.2±0.3 mEq/L。AI-ECG预测33.9%(n = 3810)的CICU患者存在高钾血症,12.9%(n = 1451)的患者经实验室确诊为高钾血症(K≥5 mEq/L)。假阳性、假阴性和真阳性患者的住院死亡率均升高(P<0.001),且这些患者组的1年生存率依次降低。

结论

基于AI-ECG的高钾血症预测,即使实验室血钾值正常,也与CICU患者较高的住院死亡率和较低的1年生存率相关。本研究表明,AI-ECG高钾血症概率可在仅依据实验室值之外,为危重症患者实现快速个体化风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f51/11450948/1aaa4c7c3fcc/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验