Harmon David M, Heinrich Chris K, Dillon John J, Carter Rickey E, Kashani Kianoush B, Attia Zachi I, Friedman Paul A, Jentzer Jacob C
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.
Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
JACC Adv. 2024 Aug 21;3(9):101169. doi: 10.1016/j.jacadv.2024.101169. eCollection 2024 Sep.
Hyperkalemia has been associated with increased mortality in cardiac intensive care unit (CICU) patients. An artificial intelligence (AI) enhanced electrocardiogram (ECG) can predict hyperkalemia, and other AI-ECG algorithms have demonstrated mortality risk-stratification in CICU patients.
The authors hypothesized that the AI-ECG hyperkalemia algorithm could stratify mortality risk beyond laboratory serum potassium measurement alone.
We included 11,234 unique Mayo Clinic CICU patients admitted from 2007 to 2018 with a 12-lead ECG and blood potassium (K) level obtained at admission with K ≥5 mEq/L defining hyperkalemia. ECGs underwent AI evaluation for the probability of hyperkalemia (probability >0.5 defined as positive). Hospital mortality was analyzed using logistic regression, and survival to 1 year was estimated using Kaplan-Meier and Cox analysis.
In the final cohort (n = 11,234), the mean age was 69.6 ± 10.5 years, 37.8% were females, and 92.4% were White. Chronic kidney disease was present in 20.2%. The mean laboratory potassium value for the cohort was 4.2 ± 0.3 mEq/L. The AI-ECG predicted hyperkalemia in 33.9% (n = 3,810) of CICU patients and 12.9% (n = 1,451) of patients had laboratory-confirmed hyperkalemia (K ≥5 mEq/L). In-hospital mortality increased in false-positive, false-negative, and true-positive patients, respectively ( < 0.001), and each of these patient groups had successively lower survival out to 1 year.
AI-ECG-based prediction of hyperkalemia, even with a normal laboratory potassium value, was associated with higher in-hospital mortality and lower 1-year survival in CICU patients. This study demonstrated that AI-ECG probability of hyperkalemia may enable rapid individualized risk stratification in critically ill patients beyond laboratory value alone.
高钾血症与心脏重症监护病房(CICU)患者死亡率增加相关。人工智能(AI)增强型心电图(ECG)可预测高钾血症,且其他AI-ECG算法已证明可对CICU患者进行死亡风险分层。
作者假设AI-ECG高钾血症算法能够在仅依据实验室血清钾测量结果之外,进一步对死亡风险进行分层。
我们纳入了2007年至2018年期间梅奥诊所CICU收治的11234例患者,这些患者入院时均进行了12导联心电图检查并测定了血钾(K)水平,血钾≥5 mEq/L定义为高钾血症。对心电图进行AI评估以确定高钾血症的概率(概率>0.5定义为阳性)。采用逻辑回归分析住院死亡率,使用Kaplan-Meier法和Cox分析估计1年生存率。
在最终队列(n = 11234)中,平均年龄为69.6±10.5岁,女性占37.8%,白人占92.4%。20.2%的患者存在慢性肾脏病。该队列的平均实验室血钾值为4.2±0.3 mEq/L。AI-ECG预测33.9%(n = 3810)的CICU患者存在高钾血症,12.9%(n = 1451)的患者经实验室确诊为高钾血症(K≥5 mEq/L)。假阳性、假阴性和真阳性患者的住院死亡率均升高(P<0.001),且这些患者组的1年生存率依次降低。
基于AI-ECG的高钾血症预测,即使实验室血钾值正常,也与CICU患者较高的住院死亡率和较低的1年生存率相关。本研究表明,AI-ECG高钾血症概率可在仅依据实验室值之外,为危重症患者实现快速个体化风险分层。