Suppr超能文献

基于机器学习的 ICU 机械通气患者撤机困难风险预测模型的构建。

Machine learning-based risk prediction model construction of difficult weaning in ICU patients with mechanical ventilation.

机构信息

Yangzhou University, School of Nursing, School of Public Health, Yangzhou, China.

Yangzhou University, Yangzhou, China.

出版信息

Sci Rep. 2024 Sep 6;14(1):20875. doi: 10.1038/s41598-024-71548-3.

Abstract

In intensive care unit (ICU) patients undergoing mechanical ventilation (MV), the occurrence of difficult weaning contributes to increased ventilator-related complications, prolonged hospitalization duration, and a significant rise in healthcare costs. Therefore, early identification of influencing factors and prediction of patients at risk of difficult weaning can facilitate early intervention and preventive measures. This study aimed to strengthen airway management for ICU patients by constructing a risk prediction model with comprehensive and individualized offline programs based on machine learning techniques. This study involved the collection of data from 487 patients undergoing MV in the ICU, with a total of 36 variables recorded. The dataset was divided into a training set (70% of the data) and a test set (30% of the data). Five machine learning models, namely logistic regression, random forest, support vector machine, light gradient boosting machine, and extreme gradient boosting, were compared to predict the risk of difficult weaning in ICU patients with MV. Significant influencing factors were identified based on the results of these models, and a risk prediction model for ICU patients with MV was established. When evaluating the models using AUC (Area under the Curve of ROC) and Accuracy as performance metrics, the Random Forest algorithm exhibited the best performance among the five machine learning algorithms. The area under the operating characteristic curve for the subjects was 0.805, with an accuracy of 0.748, recall (0.888), specificity (0.767) and F1 score (0.825). This study successfully developed a risk prediction model for ICU patients with MV using a machine learning algorithm. The Random Forest algorithm demonstrated the highest prediction performance. These findings can assist clinicians in accurately assessing the risk of difficult weaning in patients and formulating effective individualized treatment plans. Ultimately, this can help reduce the risk of difficult weaning and improve the quality of life for patients.

摘要

在接受机械通气(MV)的重症监护病房(ICU)患者中,脱机困难的发生会导致呼吸机相关并发症增加、住院时间延长和医疗保健成本显著上升。因此,早期识别影响因素并预测有脱机困难风险的患者,有助于早期干预和预防措施。本研究旨在通过构建基于机器学习技术的综合个体化离线方案的风险预测模型,加强对 ICU 患者的气道管理。

本研究涉及对在 ICU 接受 MV 的 487 名患者的数据进行收集,共记录了 36 个变量。数据集分为训练集(数据的 70%)和测试集(数据的 30%)。比较了五种机器学习模型,即逻辑回归、随机森林、支持向量机、轻梯度提升机和极端梯度提升机,以预测接受 MV 的 ICU 患者脱机困难的风险。根据这些模型的结果确定了显著的影响因素,并建立了接受 MV 的 ICU 患者的风险预测模型。

在使用 AUC(ROC 曲线下的面积)和准确性作为性能指标评估模型时,随机森林算法在五种机器学习算法中表现最佳。受试者的曲线下面积为 0.805,准确性为 0.748,召回率(0.888)、特异性(0.767)和 F1 分数(0.825)。

本研究成功地使用机器学习算法为接受 MV 的 ICU 患者开发了风险预测模型。随机森林算法表现出最高的预测性能。这些发现可以帮助临床医生准确评估患者脱机困难的风险,并制定有效的个体化治疗计划。最终,可以降低脱机困难的风险,提高患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4397/11379950/82bdf57b745d/41598_2024_71548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验