Liu Shicheng, Yu Junbo, Chen Xiangyu, Li Na, Zhou Qulan
Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Nanomaterials (Basel). 2025 Aug 22;15(17):1294. doi: 10.3390/nano15171294.
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO conversion. By incorporating sulphur vacancies into MoS, an S-scheme heterojunction photocatalyst (MoS-SVs/g-CN) was developed, achieving efficient and selective CO photoreduction to CHOH. The structural and photoelectronic characterisation of the system shows that the heterogeneous interface between MoS and g-CN is in close contact. The introduction of SVs effectively modulates the electronic structure and surface activity of MoS, which in turn enhances the CO reduction performance. Optical and electronic structure analyses reveal that the heterojunction promotes favourable band alignment and interfacial electric potential gradients, which together suppress charge recombination and enhance directional carrier separation. Under irradiation, the MoS-SVs/g-CN photocatalyst exhibited outstanding photocatalytic CHOH production with a yield of 10.06 μmol·h·g, significantly surpassing the performance of control samples while demonstrating excellent product selectivity and remarkable stability. Mechanistic studies further verify that vacancy-induced energy band modulation with Fermi energy level enhancement significantly reduces the multi-electron transfer barrier, thus preferentially driving the CHOH generation pathway. This work proposes a universal structural design strategy that synergistically coordinates vacancy engineering with band structure modulation, establishing both theoretical principles and practical methodologies for developing selective multi-electron CO reduction systems.
开发兼具高效率和反应路径选择性的光催化剂对于实现高效且可持续的CO转化至关重要。通过将硫空位引入MoS中,开发出了一种S型异质结光催化剂(MoS-SVs/g-CN),实现了将CO高效且选择性地光还原为CHOH。该体系的结构和光电子表征表明,MoS与g-CN之间的异质界面紧密接触。硫空位的引入有效地调节了MoS的电子结构和表面活性,进而提高了CO还原性能。光学和电子结构分析表明,异质结促进了有利的能带排列和界面电势梯度,共同抑制了电荷复合并增强了定向载流子分离。在光照下,MoS-SVs/g-CN光催化剂表现出出色的光催化CHOH生成能力,产率为10.06 μmol·h·g,显著超过对照样品的性能,同时展现出优异的产物选择性和显著的稳定性。机理研究进一步证实,空位诱导的能带调制与费米能级增强显著降低了多电子转移势垒,从而优先驱动了CHOH生成途径。这项工作提出了一种通用的结构设计策略,将空位工程与能带结构调制协同配合,为开发选择性多电子CO还原系统建立了理论原理和实用方法。