Suppr超能文献

通过电子束诱导沉积制备的压痕沉积物测定前驱体粘附系数

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition.

作者信息

Kuprava Alexander, Huth Michael

机构信息

Physics Institute, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.

出版信息

Beilstein J Nanotechnol. 2025 Jan 13;16:35-43. doi: 10.3762/bjnano.16.4. eCollection 2025.

Abstract

A fast simulation approach for focused electron beam induced deposition (FEBID) numerically solves the diffusion-reaction equation (continuum model) of the precursor surface on the growing nanostructure in conjunction with a Monte Carlo simulation for electron transport in the growing deposit. An important requirement in this regard is to have access to a methodology that can be used to systematically determine the values for the set of precursor parameters needed for this model. In this work we introduce such a method to derive the precursor sticking coefficient as one member of the precursor parameter set. The method is based on the analysis of the different growth regimes in FEBID, in particular the diffusion-enhanced growth regime in the center region of an intentionally defocused electron beam. We employ the method to determine the precursor sticking coefficient for bis(benzene)chromium, Cr(CH), and trimethyl(methylcyclopentadienyl)platinum(IV), MeCpPtMe, and find a value of about 10 for both precursors, which is substantially smaller than the sticking coefficients previously assumed for MeCpPtMe (1.0). Furthermore, depositions performed at different substrate temperatures indicate a temperature dependence of the sticking coefficient.

摘要

一种用于聚焦电子束诱导沉积(FEBID)的快速模拟方法,结合了在生长沉积物中电子传输的蒙特卡罗模拟,对生长纳米结构上前驱体表面的扩散 - 反应方程(连续介质模型)进行数值求解。在这方面的一个重要要求是要有一种方法,可用于系统地确定该模型所需的前驱体参数集的值。在这项工作中,我们引入了这样一种方法来推导前驱体粘附系数,它是前驱体参数集的一个成员。该方法基于对FEBID中不同生长模式的分析,特别是在有意散焦电子束中心区域的扩散增强生长模式。我们使用该方法确定双(苯)铬(Cr(CH))和三甲基(甲基环戊二烯基)铂(IV)(MeCpPtMe)的前驱体粘附系数,发现两种前驱体的值约为10,这大大低于先前假设的MeCpPtMe的粘附系数(1.0)。此外,在不同衬底温度下进行的沉积表明粘附系数与温度有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96d2/11744684/c4c32e3a556e/Beilstein_J_Nanotechnol-16-35-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验