Klemenčič Klara, Krajnc Andraž, Puškarić Andreas, Huš Matej, Marinič Dana, Likozar Blaž, Logar Nataša Zabukovec, Mazaj Matjaž
National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
University of Nova Gorica, Vipavska cesta 13, 5000, Nova Gorica, Slovenia.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202424747. doi: 10.1002/anie.202424747. Epub 2025 Jan 31.
Efficient CO capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO capture at indoor-relevant concentrations. NICS-24 exhibits a CO uptake of 0.7 mmol/g at 2 mbar and 25 °C, significantly outperforming the compositionally related Zn-oxalate 1,2,4-triazolate - CALF-20 (0.17 mmol/g). Improved performance is attributed to amino-functions that enhance CO binding and enable superior selectivity over N and O, achieving 8-fold and 30-fold improvements, respectively, in simulated CO/N and CO/O atmospheric ratios. In humid environments, NICS-24 retained structural integrity but exhibited an 85 % reduction in CO capacity due to competitive water adsorption. Breakthrough sorption experiments, atomistic NMR analysis, and DFT calculations revealed that water preferentially adsorbs over CO due to strong hydrogen-bonding interactions within the framework. Gained understanding of the interaction between CO and HO within the MOF framework could guide the modification via rational design with improved performance under real-world conditions.
在400 - 2000 ppm浓度下高效捕获CO对于维持宜居环境中的空气质量和推进碳捕获技术至关重要。本研究介绍了NICS - 24(国家化学研究所结构编号24),一种具有两个不同方形通道的草酸锌3,5 - 二氨基 - 1,2,4 - 三唑框架,旨在提高在室内相关浓度下的CO捕获能力。NICS - 24在2 mbar和25°C下的CO吸收量为0.7 mmol/g,显著优于组成相关的草酸锌1,2,4 - 三唑 - CALF - 20(0.17 mmol/g)。性能的提升归因于氨基官能团,其增强了CO结合能力,并对N和O实现了卓越的选择性,在模拟的CO/N和CO/O大气比例中分别提高了8倍和30倍。在潮湿环境中,NICS - 24保持结构完整性,但由于竞争性水吸附,其CO容量降低了85%。突破吸附实验、原子核磁共振分析和密度泛函理论计算表明,由于框架内强烈的氢键相互作用,水比CO更优先吸附。对金属有机框架(MOF)框架内CO与H₂O相互作用的深入理解可以通过合理设计来指导改性,从而在实际条件下具有更好的性能。