Choi Eun Young, Kim Dongyoung, Kim Jinyeong, Kim Eunjin, Lee Hyunseo, Yeo Jinyoung, Yoo Tae Keun, Kim Min
Department of Ophthalmology, Gangnam Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Republic of Korea.
VISUWORKS, Seoul, Republic of Korea.
Sci Rep. 2025 Jan 21;15(1):2729. doi: 10.1038/s41598-025-85777-7.
Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO based on pre-onset, metadata-matched fundus hemisection images. This retrospective cohort study included patients diagnosed with unilateral BRVO from two Korean tertiary centers (2005-2023), using hemisection fundus images from 27 BRVO-affected eyes paired with 81 unaffected hemisections (27 counter and 54 contralateral) for training. A U-net model segmented retinal optic discs and blood vessels (BVs), dividing them into upper and lower halves labeled for BRVO occurrence. Both unimodal models (using either fundus or BV images) and a BV-enhanced multimodal model were constructed to predict future BRVO. The multimodal model outperformed the unimodal models achieving an area under the receiver operating characteristic curve of 0.76 (95% confidence interval [CI], 0.66-0.83) and accuracy of 68.5% (95% CI 58.9-77.1%), with predictions focusing on arteriovenous crossing regions in the retinal vascular arcade. These findings demonstrate the potential of the BV-enhanced multimodal approach for BRVO prediction and highlight the need for larger, multicenter datasets to improve its clinical utility and predictive accuracy.
视网膜分支静脉阻塞(BRVO)是导致工作年龄个体视力受损的主要原因,尽管仅根据视网膜血管特征来预测其发生仍然具有挑战性。我们开发了一种深度学习模型,用于根据发病前、元数据匹配的眼底半切片图像来预测BRVO。这项回顾性队列研究纳入了来自韩国两个三级中心(2005 - 2023年)被诊断为单侧BRVO的患者,使用来自27只受BRVO影响眼睛的半切片眼底图像与81个未受影响的半切片(27个对照和54个对侧)进行训练。一个U-net模型对视网膜视盘和血管(BVs)进行分割,将它们分为上下两半,标记是否发生BRVO。构建了单峰模型(使用眼底图像或BV图像)和一个BV增强多模态模型来预测未来的BRVO。多模态模型优于单峰模型,其受试者操作特征曲线下面积为0.76(95%置信区间[CI],0.66 - 0.83),准确率为68.5%(95% CI 58.9 - 77.1%),预测重点关注视网膜血管弓中的动静脉交叉区域。这些发现证明了BV增强多模态方法在BRVO预测中的潜力,并强调需要更大的多中心数据集来提高其临床实用性和预测准确性。