Chen Fangansheng, Jiang Jia, Peng Yushi, Wang Ling, Lan Junping, Bian Shuying, Wang Hanzhe, Xiao Zhe, Chen Yimin, Fu Yinuo, Zheng Xiangwu, Tang Kun
Department of Nuclear Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Department of Radiology, the First People's Hospital of Wenling, Taizhou, China.
Quant Imaging Med Surg. 2025 Jan 2;15(1):30-41. doi: 10.21037/qims-24-1149. Epub 2024 Dec 16.
Although F-prostate-specific membrane antigen-1007 (F-PSMA-1007) positron emission tomography/computed tomography (PET/CT) and multiparametric magnetic resonance imaging (mpMRI) are good predictors of prostate cancer (PCa) prognosis, their combined ability to predict prostate-specific antigen (PSA) persistence has not been thoroughly evaluated. In this study, we assessed whether clinical, mpMRI, and F-PSMA-1007 PET/CT characteristics could predict PSA persistence in patients with PCa treated with radical prostatectomy (RP).
This retrospective study involved consecutive patients diagnosed with PCa who underwent both preoperative mpMRI and PSMA PET/CT scans between April 2019 and June 2022. Scatter plots and heat maps were employed to determine the correlation of mpMRI and PSMA PET/CT features with preoperative PSA. Univariate logistic regression analyses were used assess the correlation between age, maximum Prostate Imaging-Reporting and Data System (PI-RADS) score, prostate-specific antigen density (PSAD), extracapsular extension (EPE), seminal vesicle invasion (SVI), total lesion PSMA (PSMA-TL), and PSA persistence. Multivariate logistic regression analyses were used to develop a predictive model for PSA persistence, while decision tree analysis was used to classify patients into different risk groups for easy interpretation and visualization. We divided the patient cohort into training and validation sets in an 8:2 ratio. To ensure the reliability of the model, we performed five-fold cross-validation of the validation results.
Ultimately, this study included 190 patients with PCa. The median age of the patients was 69 years [interquartile range (IQR) 64-73 years]. Among the patients, 35 (18%) experienced PSA persistence following RP. Additionally, SVI was identified in 31 (16%) patients. The median values for SUVmax and PSMA-TL were 11.83 (IQR 7.44-20.89) and 41.92 (IQR 21.25-113.83), respectively. Spearman correlation analysis indicated that the preoperative PSA levels in patients with PCa were slightly correlated with the maximum standardized uptake value (SUVmax) (r=0.41; P<0.001), significantly correlated with PSMA-TL (r=0.58, P<0.001), and strongly correlated with PSAD (r=0.865, P<0.001). Multivariate logistic regression analysis showed that the independent predictors of PSA persistence were SVI on mpMRI [area under the curve (AUC)=0.63; 95% confidence interval (CI): 0.516-0.739] and PSMA-TL (AUC =0.80; 95% CI: 0.723-0.877) on PSMA PET/CT (all P values <0.05). Patients with SVI and PSMA-TL >63.38 cm were more likely to have PSA persistence. Decision tree analysis stratified patients into low-risk (5%), intermediate-risk (36%), and high-risk (48%) categories for PSA persistence. The model exhibited good discriminatory capability in internal validation (AUC 0.93, 95% CI: 0.850-0.930).
F-PSMA-1007 PET/CT and mpMRI parameters were proved effective in predicting PSA persistence in postoperative patients with PCa. The decision tree classification model could help clinicians to assess patients with individualized risk stratification. Patients with PSMA-TL levels below the threshold are highly likely not to have PSA persistence.
尽管F-前列腺特异性膜抗原-1007(F-PSMA-1007)正电子发射断层扫描/计算机断层扫描(PET/CT)和多参数磁共振成像(mpMRI)是前列腺癌(PCa)预后的良好预测指标,但它们联合预测前列腺特异性抗原(PSA)持续存在的能力尚未得到充分评估。在本研究中,我们评估了临床、mpMRI和F-PSMA-1007 PET/CT特征是否能够预测接受根治性前列腺切除术(RP)的PCa患者的PSA持续存在情况。
这项回顾性研究纳入了2019年4月至2022年6月期间连续诊断为PCa且接受了术前mpMRI和PSMA PET/CT扫描的患者。采用散点图和热图来确定mpMRI和PSMA PET/CT特征与术前PSA的相关性。使用单因素逻辑回归分析评估年龄、最大前列腺影像报告和数据系统(PI-RADS)评分、前列腺特异性抗原密度(PSAD)、包膜外侵犯(EPE)、精囊侵犯(SVI)、总病变PSMA(PSMA-TL)与PSA持续存在之间的相关性。使用多因素逻辑回归分析建立PSA持续存在的预测模型,同时使用决策树分析将患者分为不同风险组以便于解释和可视化。我们以8:2的比例将患者队列分为训练集和验证集。为确保模型的可靠性,我们对验证结果进行了五重交叉验证。
最终,本研究纳入了190例PCa患者。患者的中位年龄为69岁[四分位间距(IQR)64 - 73岁]。在这些患者中,35例(18%)在RP后出现PSA持续存在。此外,31例(16%)患者被发现有SVI。SUVmax和PSMA-TL的中位值分别为11.83(IQR 7.44 - 20.89)和41.92(IQR 21.25 - 113.83)。Spearman相关性分析表明,PCa患者的术前PSA水平与最大标准化摄取值(SUVmax)轻度相关(r = 0.41;P < 0.001),与PSMA-TL显著相关(r = 0.58,P < 0.001),与PSAD高度相关(r = 0.865,P < 0.0)。多因素逻辑回归分析显示,PSA持续存在的独立预测因素是mpMRI上的SVI [曲线下面积(AUC)= 0.63;95%置信区间(CI):0.516 - 0.739]和PSMA PET/CT上的PSMA-TL(AUC = 0.80;95% CI:0.723 - 0.877)(所有P值<0.05)。有SVI且PSMA-TL>63.38 cm的患者更有可能出现PSA持续存在。决策树分析将患者分为PSA持续存在的低风险(5%)﹑中风险(36%)和高风险(48%)类别。该模型在内部验证中表现出良好的区分能力(AUC 0.93,95% CI:0.850 - 0.930)。
F-PSMA-1007 PET/CT和mpMRI参数被证明可有效预测PCa术后患者的PSA持续存在情况。决策树分类模型可帮助临床医生进行个体化风险分层评估。PSMA-TL水平低于阈值的患者极有可能不会出现PSA持续存在。