Suppr超能文献

使用深度学习、临床模型和多基因评分预测房颤发病情况。

Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores.

作者信息

Jabbour Gilbert, Nolin-Lapalme Alexis, Tastet Olivier, Corbin Denis, Jordà Paloma, Sowa Achille, Delfrate Jacques, Busseuil David, Hussin Julie G, Dubé Marie-Pierre, Tardif Jean-Claude, Rivard Léna, Macle Laurent, Cadrin-Tourigny Julia, Khairy Paul, Avram Robert, Tadros Rafik

机构信息

Montreal Heart Institute Research Centre, 5000 Belanger St, Montreal, Quebec H1T 1C8, Canada.

Faculty of Medicine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada.

出版信息

Eur Heart J. 2024 Dec 7;45(46):4920-4934. doi: 10.1093/eurheartj/ehae595.

Abstract

BACKGROUND AND AIMS

Deep learning applied to electrocardiograms (ECG-AI) is an emerging approach for predicting atrial fibrillation or flutter (AF). This study introduces an ECG-AI model developed and tested at a tertiary cardiac centre, comparing its performance with clinical models and AF polygenic score (PGS).

METHODS

Electrocardiograms in sinus rhythm from the Montreal Heart Institute were analysed, excluding those from patients with pre-existing AF. The primary outcome was incident AF at 5 years. An ECG-AI model was developed by splitting patients into non-overlapping data sets: 70% for training, 10% for validation, and 20% for testing. The performance of ECG-AI, clinical models, and PGS was assessed in the test data set. The ECG-AI model was externally validated in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) hospital data set.

RESULTS

A total of 669 782 ECGs from 145 323 patients were included. Mean age was 61 ± 15 years, and 58% were male. The primary outcome was observed in 15% of patients, and the ECG-AI model showed an area under the receiver operating characteristic (AUC-ROC) curve of .78. In time-to-event analysis including the first ECG, ECG-AI inference of high risk identified 26% of the population with a 4.3-fold increased risk of incident AF (95% confidence interval: 4.02-4.57). In a subgroup analysis of 2301 patients, ECG-AI outperformed CHARGE-AF (AUC-ROC = .62) and PGS (AUC-ROC = .59). Adding PGS and CHARGE-AF to ECG-AI improved goodness of fit (likelihood ratio test P < .001), with minimal changes to the AUC-ROC (.76-.77). In the external validation cohort (mean age 59 ± 18 years, 47% male, median follow-up 1.1 year), ECG-AI model performance remained consistent (AUC-ROC = .77).

CONCLUSIONS

ECG-AI provides an accurate tool to predict new-onset AF in a tertiary cardiac centre, surpassing clinical and PGS.

摘要

背景与目的

应用于心电图的深度学习(心电图人工智能)是预测心房颤动或心房扑动(房颤)的一种新兴方法。本研究介绍了一种在三级心脏中心开发并测试的心电图人工智能模型,并将其性能与临床模型和房颤多基因评分(PGS)进行比较。

方法

对蒙特利尔心脏研究所窦性心律的心电图进行分析,排除既往有房颤的患者的心电图。主要结局是5年时发生的房颤。通过将患者分为不重叠的数据集来开发心电图人工智能模型:70%用于训练,10%用于验证,20%用于测试。在测试数据集中评估心电图人工智能、临床模型和PGS的性能。心电图人工智能模型在重症监护医学信息数据库-IV(MIMIC-IV)医院数据集中进行外部验证。

结果

共纳入145323例患者的669782份心电图。平均年龄为61±15岁,58%为男性。15%的患者观察到主要结局,心电图人工智能模型的受试者工作特征曲线下面积(AUC-ROC)为0.78。在包括首次心电图的事件发生时间分析中,心电图人工智能的高风险推断识别出26%的人群,其发生房颤的风险增加4.3倍(95%置信区间:4.02-4.57)。在对2301例患者的亚组分析中,心电图人工智能的表现优于CHARGE-AF(AUC-ROC = 0.62)和PGS(AUC-ROC = 0.59)。将PGS和CHARGE-AF添加到心电图人工智能中可改善拟合优度(似然比检验P < 0.001),AUC-ROC变化最小(0.76-0.77)。在外部验证队列(平均年龄59±18岁,47%为男性,中位随访1.1年)中,心电图人工智能模型的性能保持一致(AUC-ROC = 0.77)。

结论

心电图人工智能为三级心脏中心预测新发房颤提供了一种准确的工具,优于临床模型和PGS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d044/11631091/cdaf67213251/ehae595_sga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验