Foustoukos Dionysis I, Houghton Jennifer L
Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA.
Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0201024. doi: 10.1128/aem.02010-24. Epub 2025 Jan 22.
Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases. We present protocols for sterilization, inoculation, agitation, and sampling strategies that minimize cell lysis, applicable to a wide range of chemostat designs.
适应海洋深处和地壳地下高静水压力的微生物代表了一个在极端压力、温度和养分可利用性条件下蓬勃发展的系统发育多样的群落。为了更好地理解这些条件下的微生物功能、生理反应和代谢策略,需要高压(HP)连续培养技术,尽管该技术在生物工程和生物技术应用中常用,但在地球微生物群落研究中仍然相对少见。在这里,我们重点关注高压恒化器设计的最新进展,特别强调对溶解气体输送和采样的适应性。我们提出了用于灭菌、接种、搅拌和采样策略的方案,这些方案可最大限度地减少细胞裂解,适用于广泛的恒化器设计。