Suppr超能文献

多参数磁共振成像联合影像组学用于子宫内膜纤维化的诊断与分级

Multi-parametric MRI combined with radiomics for the diagnosis and grading of endometrial fibrosis.

作者信息

Wang Huanhuan, Zhu Li, Zhu Hui, Meng Jie, Liang Huanhuan, Li Danyan, Hu Yali, Zhou Zhengyang

机构信息

Department of Radiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, No. 321 Zhongshan Road, Nanjing, 210008, China.

Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.

出版信息

Abdom Radiol (NY). 2025 Jan 22. doi: 10.1007/s00261-024-04785-9.

Abstract

PURPOSE

To evaluate the application of multi-parametric MRI (MP-MRI) combined with radiomics in diagnosing and grading endometrial fibrosis (EF).

METHODS

A total of 74 patients with severe endometrial fibrosis (SEF), 41 patients with mild to moderate fibrosis (MMEF) confirmed by hysteroscopy, and 40 healthy women of reproductive age were prospectively enrolled. The enrolled data were randomly stratified and divided into a train set (108 cases: 28 healthy women, 29 with MMEF, and 51 with SEF) and a test set (47 cases: 12 healthy women, 12 MMEF and 23 SEF) at a ratio of 7:3. All participants underwent T2 and DWI sequence scans. By freely delineating the volume of interest (VOI) of the endometrium in three subgroups, radiomic features were extracted and selected. Two feature selection methods and four machine learning (ML) classifiers were combined in pairs to establish five prediction models [model (T2 + ADC + clinical data), model (T2 + ADC), model (T2), model (ADC), and model (clinical data)], resulting in a total of 40 classification models. The predictive performance of all models was evaluated using the area under the curve (AUC), F1-score, and accuracy (ACC).

RESULTS

The "UFS-LR" model, which combined unsupervised feature selection (UFS) with the logistic regression (LR) classifier, performed the best, with an average AUC of 0.92 on the test set. Among the five models constructed via UFS-LR, model exhibited the best performance, with average AUC, F1-score, and ACC values of 0.92, 0.80, and 0.81, respectively. T2-related features were the most significant in distinguishing fibrosis levels, with T2_wavelet-LLL_gldm_DependenceVariance being the most important characteristic among them.

CONCLUSION

MP-MRI radiomics analysis using ML has excellent performance in grading EF. This approach is non-invasive and has the potential to reduce the reliance on hysteroscopy.

摘要

目的

评估多参数磁共振成像(MP-MRI)联合影像组学在子宫内膜纤维化(EF)诊断及分级中的应用。

方法

前瞻性纳入74例经宫腔镜证实的重度子宫内膜纤维化(SEF)患者、41例轻至中度纤维化(MMEF)患者及40例健康育龄女性。将纳入数据随机分层,按7:3的比例分为训练集(108例:28例健康女性、29例MMEF患者、51例SEF患者)和测试集(47例:12例健康女性、12例MMEF患者、23例SEF患者)。所有参与者均接受T2加权成像和扩散加权成像(DWI)序列扫描。通过在三个亚组中自由勾勒子宫内膜的感兴趣区(VOI),提取并选择影像组学特征。将两种特征选择方法与四种机器学习(ML)分类器两两组合,建立五个预测模型[模型(T2+表观扩散系数(ADC)+临床数据)、模型(T2+ADC)、模型(T2)、模型(ADC)、模型(临床数据)],共得到40个分类模型。使用曲线下面积(AUC)、F1分数和准确率(ACC)评估所有模型的预测性能。

结果

将无监督特征选择(UFS)与逻辑回归(LR)分类器相结合的“UFS-LR”模型表现最佳,在测试集上的平均AUC为0.92。在通过UFS-LR构建的五个模型中,模型表现最佳,平均AUC、F1分数和ACC值分别为0.92、0.80和0.81。T2相关特征在区分纤维化程度方面最为显著,其中T2小波-LLL-灰度共生矩阵(GLDM)-相关性方差是最重要的特征。

结论

使用ML的MP-MRI影像组学分析在EF分级中具有优异性能。该方法具有非侵入性,有可能减少对宫腔镜检查的依赖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验