Cui Xiaoqi, Nigmatulin Fedor, Wang Lei, Reduto Igor, Liapis Andreas C, Du Mingde, Uddin Md Gius, Abde Mayeen Shafi, Ahmed Faisal, Zhang Yi, Yoon Hoon Hahn, Lipsanen Harri, Honkanen Seppo, Aalto Timo, Yang Zongyin, Hasan Tawfique, Cai Weiwei, Sun Zhipei
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Sci Adv. 2025 Jan 24;11(4):eado6886. doi: 10.1126/sciadv.ado6886. Epub 2025 Jan 22.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers. We report narrow-band spectral sensing with peak accuracies of ∼0.19 nanometers in free space and ∼2.45 nanometers on-chip. In addition, we implement broadband complex spectral sensing for material identification, applicable to organic dyes, metals, semiconductors, and dielectrics. This work advances high-performance, miniaturized optical spectroscopy for both free-space and on-chip applications, offering cost-effective solutions, broad applicability, and scalable manufacturing.
重构光电子光谱技术已引发了人们对传统光谱工具(如光谱仪)小型化的浓厚兴趣。然而,大多数先进的演示都面临着光响应矩阵秩亏的基本限制。在这项工作中,我们展示了一种使用电可调紧凑型光电子接口的小型化光谱传感系统,该系统能从各种输入光谱中产生可区分的光响应,从而在5微米×5微米的器件尺寸下实现精确的光谱识别。我们报告了在自由空间中峰值精度约为0.19纳米、片上精度约为2.45纳米的窄带光谱传感。此外,我们还实现了用于材料识别的宽带复光谱传感,适用于有机染料、金属、半导体和电介质。这项工作推动了适用于自由空间和片上应用的高性能、小型化光学光谱技术的发展,提供了经济高效的解决方案、广泛的适用性和可扩展的制造工艺。