Vienna University of Technology, Institute of Photonics, Gußhausstraße 27-29, 1040, Vienna, Austria.
Nat Commun. 2023 Jul 17;14(1):4264. doi: 10.1038/s41467-023-40055-w.
Optical spectroscopy is an indispensable technique in almost all areas of scientific research and industrial applications. After its acquisition, an optical spectrum is usually further processed using a mathematical algorithm to classify or quantify the measurement results. Here we present the design and realization of a smart photodetector that provides such information directly without the need to explicitly record a spectrum. This is achieved by tailoring the spectral responsivity of the device to a specific purpose. In-sensor computation is performed at the lowest possible level of the sensor system hierarchy - the physical level of photon detection - and does not require any external processing of the measurement data. The device can be programmed to cover different types of spectral regression or classification tasks. We present the analysis of spectral mixtures as an example, but the scheme can also be applied to any other algorithm that can be represented by a linear operator. Our prototype physical implementation utilizes an ensemble of optical cavity-enhanced MoS photodetectors with different center wavelengths and individually adjustable peak responsivities. This spectroscopy method represents a significant advance in miniaturized and energy-efficient optical sensing.
光学光谱学是几乎所有科学研究和工业应用领域不可或缺的技术。在获得光学光谱后,通常会使用数学算法对其进行进一步处理,以对测量结果进行分类或量化。在这里,我们介绍了一种智能光电探测器的设计和实现,该探测器无需明确记录光谱即可直接提供此类信息。这是通过将器件的光谱响应度针对特定目的进行定制来实现的。在传感器系统层次结构的最低级别——光子检测的物理级别——执行传感器内计算,并且不需要对测量数据进行任何外部处理。该设备可以编程以覆盖不同类型的光谱回归或分类任务。我们以光谱混合物的分析为例,但该方案也可以应用于任何其他可以用线性算子表示的算法。我们的原型物理实现利用了具有不同中心波长和可单独调节峰值响应度的光学腔增强 MoS 光电探测器的集合。这种光谱学方法代表了在小型化和节能型光学传感方面的重大进展。