Balena Antonio, Bianco Marco, Andriani Maria Samuela, Montinaro Cinzia, Spagnolo Barbara, Pisanello Marco, Pisano Filippo, Sabatini Bernardo L, De Vittorio Massimo, Pisanello Ferruccio
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy.
Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, France.
Nat Protoc. 2025 Jan 22. doi: 10.1038/s41596-024-01105-9.
Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes. Fibertrodes require the application of a set of planar microfabrication techniques to a nonplanar system with low and nonconstant curvature radius. Here we develop a process based on multiple conformal depositions, nonplanar two-photon lithography and chemical wet etching steps to obtain metallic patterns on the highly curved surface of the fiber taper. We detail the manufacturing, encapsulation and back end of the fibertrodes. The design of the probe can be adapted for different experimental requirements. Using the optical setup design, it is possible to perform angle selective light coupling with the fibertrodes and their implantation and use in vivo. The fabrication of fibertrodes is estimated to require 5-9 d. Nonetheless, due to the high scalability of a large part of the protocol, the manufacture of multiple fibertrodes simultaneously substantially reduces the required time for each probe. The procedure is suitable for users with expertise in microfabrication of electronics and neural recordings.
可植入式多功能探头已经改变了神经科学研究,能够获取以前无法实现的多方面大脑活动。通常情况下,要同时获取光学和电信号需要使用单独的探头,而将它们集成到单个设备中可能会产生光生电伪像,影响高频神经记录的质量。在旨在实现可植入式多功能接口的诸多重要策略中,最近已证明使用光纤电极可以在单个微创锥形光纤探头上集成光学和电学功能。光纤电极需要将一套平面微加工技术应用于曲率半径低且不恒定的非平面系统。在这里,我们开发了一种基于多次共形沉积、非平面双光子光刻和化学湿法蚀刻步骤的工艺,以在光纤锥的高曲面上获得金属图案。我们详细介绍了光纤电极的制造、封装和后端。探头的设计可以根据不同的实验要求进行调整。利用光学装置设计,可以与光纤电极进行角度选择性光耦合,并将其植入体内并在体内使用。光纤电极的制造估计需要5 - 9天。尽管如此,由于该协议的很大一部分具有高可扩展性,同时制造多个光纤电极可大幅减少每个探头所需的时间。该程序适用于在电子微加工和神经记录方面有专业知识的用户。