Lee Youngbin, Canales Andres, Loke Gabriel, Kanik Mehmet, Fink Yoel, Anikeeva Polina
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2020 Dec 23;6(12):2319-2325. doi: 10.1021/acscentsci.0c01188. Epub 2020 Nov 25.
Multimaterial fibers engineered to integrate glasses, metals, semiconductors, and composites found applications in ubiquitous sensing, biomedicine, and robotics. The longitudinal symmetry typical of fibers, however, limits the density of functional interfaces with fiber-based devices. Here, thermal drawing and photolithography are combined to produce a scalable method for deterministically breaking axial symmetry within multimaterial fibers. Our approach harnesses a two-step polymerization in thiol-epoxy and thiol-ene photopolymer networks to create a photoresist compatible with high-throughput thermal drawing in atmospheric conditions. This, in turn, delivers meters of fiber that can be patterned along the length increasing the density of functional points. This approach may advance applications of fiber-based devices in distributed sensors, large area optoelectronic devices, and smart textiles.
经过设计以集成玻璃、金属、半导体和复合材料的多材料纤维在无处不在的传感、生物医学和机器人技术中得到了应用。然而,纤维典型的纵向对称性限制了与基于纤维的设备的功能界面密度。在此,热拉伸和光刻技术相结合,产生了一种可扩展的方法,用于在多材料纤维内确定性地打破轴向对称性。我们的方法利用硫醇 - 环氧和硫醇 - 烯光聚合物网络中的两步聚合反应,来创建一种与大气条件下的高通量热拉伸兼容的光刻胶。这反过来又能生产出数米长的纤维,这些纤维可以沿着长度进行图案化,从而增加功能点的密度。这种方法可能会推动基于纤维的设备在分布式传感器、大面积光电器件和智能纺织品中的应用。