Suppr超能文献

自我报告描绘了源自脑成像的任务状态全貌。

Self-reports map the landscape of task states derived from brain imaging.

作者信息

Mckeown Brontë, Goodall-Halliwell Ian, Wallace Raven, Chitiz Louis, Mulholland Bridget, Karapanagiotidis Theodoros, Hardikar Samyogita, Strawson Will, Turnbull Adam, Vanderwal Tamara, Ho Nerissa, Wang Hao-Ting, Xu Ting, Milham Michael, Wang Xiuyi, Zhang Meichao, Gonzalez Alam Tirso Rj, Vos de Wael Reinder, Bernhardt Boris, Margulies Daniel, Wammes Jeffrey, Jefferies Elizabeth, Leech Robert, Smallwood Jonathan

机构信息

Department of Psychology, Queens University, Kingston, Ontario, Canada.

School of Psychology, University of Sussex, Brighton, UK.

出版信息

Commun Psychol. 2025 Jan 22;3(1):8. doi: 10.1038/s44271-025-00184-y.

Abstract

Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a 'state-space' that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.

摘要

心理状态会影响我们的幸福感和工作效率;然而,从历史上看,人们一直认为对其影响的评估受到内省量化它们的准确性的限制。在过去二十年中,研究表明,使用功能磁共振成像(fMRI)等技术,对心理状态的内省描述与认知的客观指标相关,包括任务表现和脑功能指标。这些证据表明,有可能量化经验的自我报告与这些状态的客观表征之间的映射关系(例如,从大脑活动测量中推断出的那些表征)。在这里,我们使用机器学习表明,跨任务的自我报告经验描述可以可靠地映射从大脑活动中得出的任务状态的客观情况。在我们的研究中,194名参与者在执行任务时描述了他们的心理状态,而先前的fMRI研究已经明确了不同脑系统在这些任务中的作用。我们使用机器学习将这些报告与脑功能描述相结合,形成一个“状态空间”,该空间仅根据未见过的经验描述就能可靠地预测大脑活动模式(N = 101)。我们的研究表明,内省报告可以与从大脑活动推断出的客观任务情况共享信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验